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DECOMPOSITION PRINCIPLE FOR 

LINEAR PROGRAMSt 

George B. Dantzig and Philip Wolfe 

The Rand Corporation, Santa Monica, California 

(Received November 24, 1959) 

A technique is presented for the decomposition of a liiaear program that 
permits the problem to be solved by alternate solutions of linear sub-pro- 
grams representing its several parts and a coordinating program that is 
obtained from the parts by linear transformations. The coordinating 
program generates at each cycle new objective forms for each part, and each 
part generates in turn (from its optimal basic feasible solutions) new activi- 
ties (columns) for the interconnecting program. Viewed as an instance of 
a 'generalized programming problem' whose columns are draqwn freely 
from given convex sets, such a problem can be studied by an appropriate 
generalization of the duality theorem for linear programming, which 
permits a sharp distinction to be made between those constraints that 
pertain only to a part of the problem and those that coniect its parts. This 
leads to a generalization of the Simplex Algorithm, for which the decom- 
position procedure becomes a special case. Besides holding promise for the 
efficient computation of large-scale systems, the principle yields a certain 
rationale for the 'decentralized decision process' in the theory of the firm. 
Formally the prices generated by the coordinating program cause the man- 
ager of each part to look for a 'pure' sub-program analogue of pure strategy 
in game theory, which he proposes to the coordinator as best he can do. 
The coordinator finds the optimum 'mix' of pure sub-programs (using new 
proposals and earlier ones) consistent with over-all demands and supply, 
and thereby generates new prices that again generates new proposals by 
each of the parts, etc. The iterative process is finite. 

A VECTOR P interconnecting two parts of a program is viewed as ob- 
tained by linear transformations from linear sub-programs L and L' 

(more generally as drawn from convexes) defining the parts. P is repre- 
sented as a convex combination of a finite set of possible P from each part 
and equated to a similar representation for the other-the selected vectors 
correspond to extreme points and certain homogeneous solutions of the 
sub-programs. Starting with some admissible m-component vector P=PO, 
the total vectors (points) used in the two representations can be reduced 

t The material of this paper appeared originally under the same title as Rand 
Corporation P-1544, November 10, 1958, and was presented at the Rand Symposium 
on Mathematical Programming in March, 1959. It was also presented before the 
American Mathematical Society, January 20, 1959, in Philadelphia, Pennsylvania 
(see Am. Math. Society Notices, Abstract No. 553-559, Vol. 5, No. 7, Issue No. 35, De- 
cember, 1958, p. 811). 
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102 Dantzig and Wolfe 

to m+2. This forms a basis whose Lagrange (simplex) multipliers 7r rela- 
tive to a form being extremized are used to test optimality or for generating 
a better interconnecting vector. This is done by solving two independent 
linear programs for points in L and L' that minimize two linear forms de- 
pendent on 7r. 

The entire procedure may be simulated as a decentralized decision 
process. Each independent part initially offers a possible bill of goods (a 
vector of outputs and supporting inputs including outside costs) to a 
central coordinating agency. As a set these are mutually feasible with each 
other and the given resources and demands from outside the system. The 
coordinator works out a system of 'prices' for paying for each component 
of the vector plus a special subsidy for each part that just balances the 
cost. A bonus or some other form of award is then offered the manage- 
ment of each part if he can offer, based on these prices, a new feasible pro- 
gram for his part with lower cost without regard to whether it is feasible for 
any other part. The coordinator, however, combines these new offers 
with the set of earlier offers so as to preserve mutual feasibility and con- 
sistency with exogenous demand and supply and to minimize cost. Using 
the improved over-all solution he generates a revised set of prices, sub- 
sidies, and new offers. The essential idea is that old offers are never forgotten 
by the central agency (unless using 'current' prices they are unprofitable); 
the former are mixed with the new offers to form new prices. 

Computationally if P is an m-component vector and L is defined by k 
equations in n nonnegative variables and L' by k' equations in n' non- 
negative variables, then each major simplex cycle consists in solving two 
k Xn and k'Xn' auxiliary linear programs after m(m+n+n') multiplica- 
tions to set up 7r and adjust the solution. The iterative procedure is 
finite. The principle is applied to decompose typical structures into 
several parts. 

Credit is due to FORD AND FULKERSON for their proposal for solving 
multicommodity network problems as it served to inspire the present 
development. t 

THE GENERAL PRINCIPLE 

SUPPOSE we have a linear program expressed in vector notation in the 
form 

Po x0+P1 xI+ *+Pn xn-Q (1) 

where Pj, Q are given vectors and the problem is to choose Max xo and 
xj>0 for j= 1, 2, ***, n. Ordinarily the objective form of a linear-pro- 

t L. R. FORD, JR., AND D. R. FULKERSON, "A Suggested Computation for Maxi- 
mal Multicommodity Network Flow," Management Sci. 5, 97 (1958). 
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gramming problem is written as 

Cl Xl+C2x2+ *+C cx =z(Min), (2) 

which may be rewritten 

xO+cl xl+c2 x2+* +cn x=O, (3) 

where xo is to be maximized. In this case Po is a unit vector. 
Let us now consider the general problem of solving the linear-program- 

ming problem of finding vectors X>0, Y> 0 and Max xo satisfying 

Po xo+A1 X+A2 Y= b (4) 

subject to linear programs L and L' defined by 

L: A1 X=bl, (X_0) 

L': A2Y=b2, (Y>0) 

where Ai,Ai are matrices, Po, b, bi are vectors and b has m components.t 
We shall show later how multistage models such as dynamic models with 
discrete time periods, angular systems multistage and block triangular 
models can be readily decomposed into several parts each exhibiting the 
above structure. 

Let us define vectors S and T corresponding to X and Y by the linear 
transformations 

S=A1 X for arbitrary X_0 and A1 X=b1; (6) 

T=A2 Y for arbitrary Y>0 and A2 Y=b2. (7) 

Starting Assumption I: Let us suppost first that a starting feasible 
solution is at hand: X = Xo, Y= Yo, xo = xo0; that is to say one which satis- 
fies all the constraints (4) and (5) except xoo may not be maximal. Such 
a solution could have been generated for example, by the Phase I procedure 
of linear programming using artificial variables. If so the methods we are 
about to discuss would be applied to Phase I first. 

Let So = A1 Xo and T?= A2 Yo so that 

Po xo0+ So+ To= b. (8) 

Starting Assumption II: We shall suppose further that So has been rep- 
reselnted with weights Xi= Xi in the form 

SO=-S l+ S2 2+ ***+ Sk Xk, (Xi > 0) 

1= 31 X1+32 X2+ 2 + * +6k Xk, 

t We assume for convenience that bis'!O, b2sO. If b,=O the restriction requir- 
ing convex combinations of solutions of t and l should be dropped in the development 
that follows [second equation of (9) or (12)]. 
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where each Si=A1 Xi, (X_?O) (10) 

where Xi is either an extreme point or homogeneous solution [see (11)] of 
L, and bi is defined by 

{Xiextreme pointi solution of A i=b (11) 
3is=O thomogeneous J A, Xi=O ) 

Similarly To has been represented with weights gi=,qi in the form 

To= T1,41+ T2 42+ * *+ Tj 1 (Pi > O) * (p1?O) (12) 
1 = 61 A+a2 32+ * * +aI' qI, 

where Ti corresponds to some solution Yi of L'. 

Ti = A2 Yi, (Yi >O) (13) 
such that 

{ai} i (extreme 
point} 

Ai X= 
bi} if Yi is an solution of (14) 

3i=a n {homogeneous AiXi=O ( 

We now consider in place of (4) the obviously equivalent 'interconnecting 
linear program' of determining weights Xi> 0, 1i 0, and Max xo satisfying 

Po Xo+S Xo+S1 X1+ +Sk Xk+Tuo+Tl + ** +Tj /l=b, (15) 

a Xo+1 X1+* *+ak Xk= l, (16) 

' P0+6' 1,1+* +a1' ,= 1, (17) 

where S, T correspond to arbitrary extreme points (a,S' 1) or homoge- 
neous solutions (6,Y=0) of (5). A particular feasible solution can be 
obtained by setting X=,u=O and Xi= Xi, 1jg= jij. 

Starting Assumption III: Finally we suppose that the columns Ti, 
Si, Po with added components for equations (16) and (17) form a basis B 
i.e., a (m+2) X (m+2) nonsingular matrix as in (18). Let the simplex 
multipliers associated with the rows of B be ( ;-s, - t) where - ,- t are 
multipliers for the last two rows: 

Po; Sl * - - Sk; T1** Tl 
B= 0 61 . ak 0 *-- 0; -S. (18) 

0 0** 0 1 ,', ail -t 

Since we are maximizing xo the simplex multipliers by definition satisfy 

=PO=-1, =Si-ai s=O, =:Ti-6i' t=0. (19) 

To test optimality of the proposed solution we now form the row vectors 

=A41 = yl; =A2= y2. (20) 
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THEOREM 1: The solution (Xo, Yo, xoo) is maximal if for all X_O, YO, 
Z1, Z2 satisfying 

A1 X=bi, Y1 X=zl, (X_0) (21) 

A2 Y=b2, T2 Y=Z2, (Y?0) (22) 

it is true that Minz1=sy Minz2=t. (23) 

Proof. Multiplication of (9) and (12) on the left by X yields, by (19) 
and (20), 

S=1 X0, t-Y2 YO. (24) 

On the other hand multiplication of (4) on the left by : yields, by (20), 
(21), and (22) 

- Xo+Yl X+Y2 Y=b, (25) 

or xo+Zl+Z2-=b. (26) 

In particular for X = X0, Y= YO, X = XO? by (24): 

xoo+s+t==b. (27) 
Subtracting (26) from (27), 

Xo-x-o=(Zl+Z2)-(S+t). (28) 

The right-hand side is always nonnegative by (23); hence x0o > xo so 
that the solution is maximal. 

If the solution (Xo, Yo, xo?) fails to satisfy the test for optimality (23), 
say Min z1 <s, then there exists either an extreme point solution X = X* to 
(21) such that 

Minz=Tl X*<s, (29) 

or there exists a homogeneous solution X* satisfying 

A1 X*=0 and Y, X*<0. (30) 

The latter possibility warrants some discussion. It may happen that the 
convex A1 X = b, X> 0 is unbounded and that there is no lower bound for 
Zi. In this case using the simplex method a homogeneous solution, Al X 
= 0, X > 0, will be obtained with the above property. It is not difficult 
to show that the set of possible homogeneous solutions generated in this 
manner, excluding multiples, is finite. 

If we now define A1 X*= S*, (31) 

and P* -1,0 depending on whether X* is an extreme or homogeneous solu- 
tion and substitute S = S*, = 6*, the interconnecting program has one 
more variable than the number of equations. The basic solution X =0, 
-Xi=Xi, i,=,i does not satisfy the test for optimality when the simplex 
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multipliers (r, - s, - t) are multiplied scalarly by the column of coefficients 
of \o; indeed by (31), then (20), (29), and (30), this yields 

=S* -*s = =Al X*-Ps = y X*- s <O. (32) 

Hence, assuming nondegeneracy by perturbing b if necessary, an improved 
solution can be obtained by introducing S* from the auxiliary program into 
the basis of the interconnecting problem and dropping some other Si or 
Ti. Multipliers with respect to the new basis can then be determined by 
(19); these will generate new values y, and T2 by (20) and new definitions 
for zi and Z2; finally the two auxiliary linear programs (21) and (22) must 
be resolved to determine new points where z1 and Z2 are minimized. The 
algorithm is finite because of the finiteness of the set of possible bases 
derived from extreme points and homogeneous solutions generated by the 
simplex method when applied to the auxiliary problems, and because no 
basis of the interconnecting program can repeat itself since xo is mono- 
tonically increasing (when Q is perturbed to avoid degeneracy). 

If a record has been maintained of the solution vectors Xi and Yi to 
the auxiliary problems, corresponding to vectors Si and Ti in the final basis, 
then an optimal solution k and Y can be obtained by means of the relations 

X= E Z X , i =E Yi. (33) 

From iteration to iteration it is not necessary, however, to maintain a 
record of the solutions Xi and Yi to the auxiliary problems, but only a 
record of the Si, Ti in the current basis and whether or not they correspond 
to extreme or homogeneous solutions. When an optimum has been 
achieved, the final selection of Si and Xi and Ti and pi are used to compute 

s-?:Xi Si, T-y5t iiTi, (34) 

and to determine an optimum solution for X=X and Y= Y by solving the 
auxiliary problems 

A1 X=bi, A2Y=- b2, 

A1X=S, A2 Y= T, (X>O, Y_O) (35) 

where any feasible solution is an optimum solution. This is greatly simpli- 
fied by observing that the choice of components of X and Y, which are 
basic and nonbasic, are further restricted to the set which minimize z1 
and z2 respectively. 

A GENERALIZED PROGRAMMING PROBLEM 

CONSIDER a generalized linear-programming problem in which each Pj 
for j 0O may be freely chosen to be any Pi E C3 where Cj is a convex set 
defined by linear inequalities. By a simple extension, Q and Po could also 
be replaced by any Q and Po in convex sets; however, for our purposes 
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these are held constant. We shall assume Cj is a convex polyhedron so 
that a general P3 can be represented by a convex linear combination of a 
finite set of extreme points of Cj and a nonnegative linear combination of 
homogeneous solutions (in case Cj is unbounded). Two easy theorems 
are: 

THEOREM 2: A solution (xj*,Pj*) for j =O, 1, 2, , n, is optimal if there 
exists a x, such that ?Po= 1, ?P>0 for all P C j and P j*=0 for all 
xj*>O (jkO). 

THEOREM 3: Only a finite number of iterations of the simple algorithm is re- 
quired if each basic feasible solution is improved by introducing into the basis 
either an extreme point P jC C3* chosen so that 

=Pj*=MinpJECi 9P1<0, (j=1,2, ,n) (36) 

where = are the simplex multipliers of the basis or any homogeneous solution 
P j* from the finite set such that P j* <0. 

The reader will recognize that our Theorem 1 is a special case of Theorem 
2. Also that we followed the procedure implicit in Theorem 3 except we 
introduced vectors into the basis of the interconnecting problem other than 
extreme points and homogeneous rays of the convex (for the extreme points 
and homogeneous solutions of the auxiliary problems need not transform 
into similar solutions of C and C' under the mappings A1 X and A2 Y). 

DECOMPOSING SPECIAL SYSTEMS 

Angular Systems 

This will be a direct application to an important class of linear pro- 
grams. It will serve as a review of the decomposition principle given earlier 
in which no new concepts will be introduced. Consider for convenience a 
special case of an 'angular system with three block diagonal terms' 

A1 Xi -bl 

+ +2 X-2 X3 -b3 (Xt>0) (37) 

+A1 X1+A2 X2+A3 X3+P o= b, 

where At is an mtXnt matrix, Xt a column vector of nt components and 
bt, b column vectors with mt and m components. 

We consider the linear programming problem in the general form 

P1+P2+P3+Po xo=b, (Xt =1) (38) 



108 Dantzig and Wolfe 

where Pt is defined by the linear transformation 

At xt - Pt, (39) 

and Xt satisfies the sub-program Le: 

A Xt=bt. (Xt-0) (40) 

It will be convenient to assume each Lt is bounded; adjustments for 
the unbounded case can be made by forming nonnegative linear combina- 
tions instead of convex combinations for points corresponding to homoge- 
neous solutions. 

We shall require however, that each Pt be represented as a convex 
combiniation (positive weights that sum to unity) of points Pti of Pt= AXti 
where X = Xt_ 0 are extreme point solutions of Lt. 

Let us consider in place of (38), the linear-programming problem of 
finding Xi :0, Xi>O, Max xo satisfying 

Po X0+ Ek=1 Plk Xlk+Pl ?I+ E=1 P2k X2k+P2 X2 

+ Ekk- P3k X3k+P3 X3+Poxo=b, (41) 

ZXlk+X1= 1X E X2k+X2= 1, X3k+X3= 1. 

These two problems are equivalent because the convexity of Lt implies 
that a convex combination of vectors Pti and Pt corresponds to a feasible 
X in Lt. Suppose at some stage of the simplex process several points 
Ptl, Pt2, ' * *, Ptkt have been introduced into the basis so that a feasible 
solution X ik > 0 can be obtained by setting X1 = =X3 = 0 subject to E Z k =1 
for i=1l 2, 3. 

We are now interested in testing whether or not the basic solutioni 
maximizes xo. To find a better solution we determine the simplex multi- 
pliers associated with the basis 

P11 P12 . Plkl; P21 P22 P2k2; P31 P32 ... P3k3; PO 

B = 1 1l * 1 (42) 

by the relations 

=Po -1) :nPi+pi=O, (j=1, 21 ki , ; i-17 2, 3) (43) 

where c |X;P1, P2, P31! and pi, p2, p3 are the multipliers associated with 
the last three equations. To test optimality or to find a better vector to 
introduce into the basis, we solve for each t the auxiliary problems 

At Xt = bt, (Xt?) ( 4) 
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where = At is a constant row vector. If Min Zt ? 0 for all t, the solution is 
optimal. If not, Pt=Pt* is introduced into the basis corresponding to 
that t, such that Xt = X* yields 

Mint Minx, zt. (45) 

To summarize, the linear-programming problem consists of iterative cy- 
cling between two parts: 

PART I: Determine new multipliers by a simple change of basis for the 
set of m+3 equations (40) and (41). 

PART II: Solve several auxiliary mjXnj linear programs (44), for 
testing optimality of the solution and the introduction of new vectors 
At Xt* into the basis of Part I by (45). 

Multi-Stage Systems 

Consider a system with structure 

A1 X1 = ei, 

+-?i X1-+A2 X2 =e2, 

+A4-9 X2+A3X3 = e3, (Xj?O) (46) 

+A3 X3+A4 X4=e4, 

C4 X4= z4(Min), 

where Xt are vectors, At matrices, et and c4 vectors. 
We replace this formally by 

+P3+A4 X4=e4, (X4_O) (47) 

wher P~ 21 X3 s ay vetor 
c4 X4= 

Z4(Min), X?)(7 where P3= A3 X3 is any vector corresponding to (X1, X2, X3) satisfying the 
first three relations of (46) and Xj> 0. We shall require again however, 
that P3 be represented by a convex linear combination with weights X3i = 

X31 PU of C3 derived from extreme points. (This assumes boundedness; 
if not appropriate changes discussed earlier should be made for homo- 
geneous solutions.) 

E, X3i=1 (X3i?>0) (48) 

The interconnecting 'stage 4' linear program is to determine X3, X3i, X4 and 
Min Z4 satisfying 

E X3 P3i+X3 P3+A4 X4 =e4, 

E 3j +Xs a1 (X3i0, X3_0, X4> 0) (49) 
C4 X4=z4(Min). 
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We assume a basic solution is at hand using columns P3i and columns from 
A4. Let = (I, p4) be the simplex multipliers associated with the basis 
where P4 is the multiplier associated with the last equation. The solution 
is optimal if 

=P3 + P4 O, 0; (50) 

for all P3 in C3. To ascertain this we consider the subproblem to find 
Xj >0, Min Z3 satisfying 

AlXI 

1 X1+A2 X2 

A2 X2+A3 X3 

c3 X3+ p4=z3(Min), 

where C3= A3. (52) 

If Min z3 _ 0 the solution is optimal. With respect to this sub-problem, in 
an analogous manner we set up a 'stage 3' linear-programming problem 

Z X2 P2i+X2 P2+A3 X3 - e3, 

EX2i +X2 -1, (53) 

C3 X3+p4-zs(Min). 

This in turn in-duces a 'stage 2' and a 'stage 1' linear-programming problem. 
This nested set of programming problems is not as ideal as may appear 

at first because there could be a great deal of jockeying up and down the 
various stages seeking improved solutions. One procedure could be 

1. Optimize stage 4 over the columns P3i and A4 with X3=0 and use simplex 
multipliers ('4, p4) to determine C3. 

2. Use C3 to optimize stage 3 over the columns P2i with X2 =0 and use simplex 
multipliers (=l3, P3) to determine c2. 

3. Use c2 to optimize stage 2 over the columns Pii with X1 =0 and use simplex 
multipliers (=2, P2) to determine cl. 

4. Use c1 to optimize stage 1 over the columns of A1 to determineX1 =Xi*. 
5. Substitute P1 =2,X1i* into stage 2 and continue optimization of stage 2 

allowing X1 to vary to determine X2 =X2*. 
6. Substitute P2 =A2X2* into stage 3 and continue optimization of stage 3 

allowing X2 to vary to determine X3=X3*. 

7. Substitute P3 =4i3X3* into stage 4 and continue optimization of stage 4 
allowing X3 to vary to determine X4 =X4*. 

8. Recycle, treating each Pi generated above as a new Pii. All Pii are preserved 
for use in step 9. 
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9. When no new Psi are generated, the fourth stage is optimized, any feasible 
solution to the third stage is optimal subject to 13 X3 X* P3i where X3i 
x3i, X3=0 are the optimal fourth-stage weights. This in turn permits optimal 
solution of the second stage via the best third-stage weights, etc. 

Block-Triangular Systems 

The treatment of the block-triangular case is similar to the multistage 
case just considered. 
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