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Although the textbook Dantzig-Wolfe decomposition reformulation for the capacitated lot-sizing problem, as already pro-
posed by Manne [Manne, A. S. 1958. Programming of economic lot sizes. Management Sci. 4(2) 115–135], provides
a strong lower bound, it also has an important structural deficiency. Imposing integrality constraints on the columns in
the master program will not necessarily give the optimal integer programming solution. Manne’s model contains only
production plans that satisfy the Wagner-Whitin property, and it is well known that the optimal solution to a capacitated
lot-sizing problem will not necessarily satisfy this property. The first contribution of this paper answers the following
question, unsolved for almost 50 years: If Manne’s formulation is not equivalent to the original problem, what is then a
correct reformulation? We develop an equivalent mixed-integer programming (MIP) formulation to the original problem
and show how this results from applying the Dantzig-Wolfe decomposition to the original MIP formulation. The set of
extreme points of the lot-size polytope that are needed for this MIP Dantzig-Wolfe reformulation is much larger than the
set of dominant plans used by Manne. We further show how the integrality restrictions on the original setup variables
translate into integrality restrictions on the new master variables by separating the setup and production decisions. Our
new formulation gives the same lower bound as Manne’s reformulation. Second, we develop a branch-and-price algorithm
for the problem. Computational experiments are presented on data sets available from the literature. Column generation is
accelerated by a combination of simplex and subgradient optimization for finding the dual prices. The results show that
branch-and-price is computationally tractable and competitive with other state-of-the-art approaches found in the literature.
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1. Introduction and Problem Description
We consider an extension of the basic dynamic lot-sizing
problem. Before an item can be produced, a setup must be
performed and the setup time decreases the available capac-
ity. This problem is known as the capacitated lot-sizing
problem with setup times (CLST) (Trigeiro et al. 1989).
Define the following sets, parameters and variables:

Sets
I = �1� � � � � n�: set of items,
T = �1� � � � �m�: set of time periods.
Parameters
dit: demand of item i in period t ∀ i ∈ I , ∀ t ∈ T ;
sditk: sum of demand of item i, from period t until k

∀ i ∈ I , ∀ t� k ∈ T � k� t;
hcit: unit holding cost for item i in period t ∀ i ∈ I ,

∀ t ∈ T ;
scit: setup cost for item i in period t ∀ i ∈ I , ∀ t ∈ T ;
vcit: variable production cost for item i in period t ∀ i ∈ I ,

∀ t ∈ T ;

fci: unit cost for initial inventory for item i ∀ i ∈ I ;
stit: setup time for item i in period t ∀ i ∈ I , ∀ t ∈ T ;
vtit: variable production time for item i in period t ∀ i ∈ I ,

∀ t ∈ T ;
capt: time capacity in period t ∀ t ∈ T .
Decision variables
xit: production quantity of item i in period t ∀ i ∈ I ,

∀ t ∈ T ;
yit �= 1 if setup for item i in period t, = 0 otherwise ∀ i ∈ I ,

∀ t ∈ T ;
sit: inventory for item i at the end of period t ∀ i ∈ I ,

∀ t ∈ T ;
si0: amount of initial inventory for item i ∀ i ∈ I .
The mathematical formulation of the CLST is then as

follows:

Min
∑
i∈I
fcisi0 +

∑
i∈I

∑
t∈T
�scityit + vcitxit +hcitsit� (1)

s.t. si� t−1 + xit = dit + sit ∀ i ∈ I� ∀ t ∈ T � (2)
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xit � sditmyit ∀ i ∈ I� ∀ t ∈ T � (3)∑
i∈I
�stityit + vtitxit�� capt ∀t ∈ T � (4)

yit ∈ �0�1�� xit � 0� sit � 0� si0 � 0� sim = 0

∀ i ∈ I� ∀ t ∈ T � (5)

The objective function (1) minimizes the total costs, con-
sisting of the setup cost, the variable production cost, the
inventory holding cost, and initial inventory cost. Con-
straints (2) are the demand constraints. To deal with infea-
sible problems, we allow for initial inventory, which is
available in the first period at a large feasibility cost of fci
(Vanderbeck 1998). There is no setup required for initial
inventory. Next, we have the setup forcing (3) and capacity
constraints (4). Finally, we have the nonnegativity and inte-
grality constraints (5), and the inventory at the end of the
final period is set to zero. Let vCLST be the optimal objec-
tive value for problem (1)–(5) and �vCLST its LP relaxation.
We introduce a more compact notation for the variables:
xi = �xi1� xi2� � � � � xim�, si = �si0� si1� si2� � � � � sim�, and yi =
�yi1� yi2� � � � � yim�. Further, we define X

i, the single-item lot-
size polytope for each product i, as follows:

Xi=



�xi�si�yi�

∣∣∣∣∣∣∣∣∣

si�t−1+xit=dit+sit ∀t∈T �
xit�sditmyit ∀t∈T �
yit ∈�0�1�� xit�0� sit�0 ∀t∈T �

si0�0� sim=0�



�

We first provide a brief literature review on the capac-
itated lot-sizing problem (§2). The starting point of this
research is the well-known observation that the formulation
provided by Manne (1958) has a structural deficiency
because it is not equivalent to formulation (1)–(5) and pro-
vides only a lower bound. It is important to make a distinc-
tion between a formulation, in our case a Dantzig-Wolfe
(DW) decomposition reformulation, and a solution method,
i.e., column generation and branch-and-price (B&P). We
have contributions on both accounts. To the best of our
knowledge, this is the first time that a formulation has
been proposed for the dynamic lot-sizing problem, which is
the equivalent mixed-integer programming (MIP) Dantzig-
Wolfe reformulation of the original problem (§3). We
show how the integrality restrictions on the original setup
variables translate into integrality restrictions on the new
master variables by separating the setup and production
decisions. The set of extreme points of the lot-size polytope
that are needed for the MIP Dantzig-Wolfe reformulation
is larger than the set of dominant plans used by Manne.
Further, we are the first to implement a branch-and-price
algorithm for this problem. In this algorithm, we combine
Lagrange relaxation and Dantzig-Wolfe decomposition to
speed up the column generation process (§4). Our compu-
tational experiments on data sets available from the liter-
ature indicate that the B&P algorithm yields high-quality
solutions that are comparable to the current state-of-the-art
results reported in the literature (§5). Finally, avenues for
future research are discussed in the conclusion (§6).

2. Literature Review
The regular CLST formulation, given by the model (1)–(5),
usually has a large integrality gap. Much research is
devoted to finding better formulations with a smaller gap.
The model can be extended with valid inequalities. The
formulation with (l� S) inequalities (Barany et al. 1984)
describes the convex hull of the single-item uncapacitated
lot-sizing polytope. Pochet (1988), Leung et al. (1989), and
Miller et al. (2000) derive several other valid inequalities
for the capacitated problem. Belvaux and Wolsey (2000,
2001) report on an efficient branch-and-cut system that
includes preprocessing and inequalities for a variety of lot-
sizing problems. Eppen and Martin (1987) propose a differ-
ent approach for tightening the formulation using variable
redefinition. Kleindorfer and Newson (1975), Thizy and
Van Wassenhove (1985), and Trigeiro et al. (1989) propose
to dualize the capacity constraint in a Lagrange relaxation
approach. A detailed discussion of solution approaches for
the CLST can be found in Jans and Degraeve (2007).
Manne (1958) proposes an innovative linear program-

ming formulation for the CLST. He explicitly mod-
els all the possible setup schedules. Let q ∈ Qi, Qi =
��yi1� � � � � yim� � yit ∈ �0�1� ∀ t ∈ T � be a feasible setup
schedule, and let yqit be one if there is a setup for item
i in period t in setup schedule q, zero otherwise. There
are 2m different setup schedules possible for each product.
Exactly one “dominant” production plan corresponds with
each setup schedule. Manne considers only dominant pro-
duction schedules, which have the property that for each
period, demand will be met by production in that period
if there is a setup, or otherwise from the nearest preceding
period with a setup. Manne’s dominant production sched-
ules are in fact all the production schedules satisfying the
Wagner and Whitin (1958) condition: si� t−1xit = 0 ∀ t ∈
T � ∀ i ∈ I . The Wagner-Whitin production plan for item i
according to setup schedule q is defined by the produc-
tion quantities xqit and is further referred to as the Wagner-
Whitin production plan q:

x
q
it = 0 if yqit = 0�= sdit� k−1 otherwise,

with k= min
t<l�m+1

�l� y
q
il = 1 or l=m+ 1�� (6)

Note that for each schedule q, the inventory variables, sqit ,
and the initial inventory variable sqi0, are automatically deter-
mined by the production quantities, xqit , through the demand
constraints (2). Next, the parameters for the total costs
and capacity requirement for each schedule are defined as
follows:

ciq� total cost of initial inventory, setup, production,
and inventory holding for the production of
product i according to setup schedule q�= fcisqi0
+∑
t∈T
�scity

q
it + vcitxqit +hcitsqit�� (7)

riqt� capacity required for setup and variable production
time to produce product i according to setup
schedule q in period t�= stityqit + vtitxqit � (8)
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The decision variable is:
ziq : fraction of schedule q for product i that will be pro-

duced.
Manne’s formulation then, is as follows:

Min
∑
i∈I

∑
q∈Qi
ciqziq� (9)

s.t.
∑
q∈Qi
ziq = 1 ∀ i ∈ I� (10)

∑
i∈I

∑
q∈Qi
riqtziq � capt ∀ t ∈ T � (11)

ziq � 0 ∀ i ∈ I� ∀q ∈Qi� (12)

The objective function (9) minimizes the total cost. In the
first constraint (10), we choose a convex combination of
schedules for each item. The combination of the chosen
schedules must also satisfy the capacity constraint (11).
Note that the ziq variables are defined to be continuous (12).
Dzielinski and Gomory (1965) note that Manne’s model

is actually the LP relaxation of the master for the Dantzig-
Wolfe decomposition (Dantzig and Wolfe 1960) with the
capacity constraints as the linking constraints and the
subproblem being the single-item uncapacitated lot-size
problem. It is interesting to note that Manne proposed
his formulation in 1958, before the concept of Dantzig-
Wolfe decomposition was developed in 1960. Dzielinski
and Gomory (1965) propose using column generation to
deal with the difficulty of the huge number of variables
in Manne’s formulation. Column generation starts with a
feasible restricted master with only a few columns, and
we add new columns iteratively as they are needed. At
each iteration of the column generation procedure, we solve
a single-item uncapacitated subproblem for each item i,
where the objective function is to minimize the reduced
cost. Columns with a negative reduced cost are added to
the master. Next, we solve the master again as a linear
program and try to find new columns that price out with
the new dual prices in a new iteration. If we cannot find
any new column with a negative reduced cost, we have
solved the master’s LP relaxation. The optimal value of
formulation (9)–(12), �vM , is equal to or better than the
LP relaxation of the original formulation �vCLST because the
subproblem does not have the integrality property. How-
ever, this decomposition formulation with only the dom-
inant production plans has a major structural drawback.
Imposing integrality constraints on the ziq variables will
not result in an equivalent formulation for the IP prob-
lem as formulated by (1)–(5). For the capacitated prob-
lem, the optimal solution will usually not consist of pure
Wagner-Whitin schedules. This has already been observed
by Florian and Klein (1971) for the single-item capacitated
lot-sizing problem. Lambrecht and Vanderveken (1979) and
Bitran and Matsuo (1986) also notice that the set of feasi-
ble solutions for Manne’s model with integrality constraints
is only a subset of the feasible solutions for the original

integer problem. The main reason for this problem is that
a solution for the subproblem, i.e., a new column, consists
of both a setup and production quantity decision. The setup
decision automatically determines the production decision
according to the Wagner-Whitin property (6). Finally, note
that many different Dantzig-Wolfe decomposition schemes
are possible, depending on the selection of different subsys-
tems (Jans and Degraeve 2004).

3. A MIP Dantzig-Wolfe Decomposition
Approach for the CLST

Dantzig-Wolfe decomposition can be described as a special
form of variable redefinition in which the original vari-
ables are replaced by a convex combination of the extreme
points of a subsystem. We assume that the polyhedron
is bounded, which is the case for the lot-sizing problem
because the ending inventory must be zero. Otherwise, a
linear combination of extreme rays is also needed. The LP
relaxation of the Dantzig-Wolfe reformulation provides a
tighter bound unless the subsystem has the integrality prop-
erty. To ensure the equivalence between the Dantzig-Wolfe
reformulation and the original formulation, requiring that
no feasible solutions are lost or created (Martin 1987), the
integrality restrictions are imposed on the original variables
(Barnhart et al. 1998). Vanderbeck (2000) calls this the
convexification approach to the Dantzig-Wolfe decomposi-
tion. He further points out that for an integer programming
problem, there exists an alternative Dantzig-Wolfe refor-
mulation based on the discretization of the integer subsys-
tem, in which all the integer solutions are enumerated. The
discretization approach also uses the interior points of the
integer polyhedron and not just the extreme points. This
allows imposing the integrality constraints directly on the
new variables. For the special case where the variables are
restricted to be binary, the convexification and discretiza-
tion approaches are identical because there are no interior
points in the integer subsystem.
The CLST is a MIP problem. Even though the inte-

ger variables are restricted to be binary, we cannot impose
integrality conditions on the new decomposition variables,
which is clearly illustrated by Manne’s reformulation. The
extreme points of the single-item lot-size polytope Xi will
not necessarily provide an optimal solution to the over-
all problem. Whereas Manne (1958) proved that you only
need the dominant schedules to obtain the LP relaxation
of the Dantzig-Wolfe reformulation, we will prove in this
section that an equivalent reformulation can be obtained
by applying the Dantzig-Wolfe decomposition approach to
formulation (1)–(5). We will show in several steps how
this translates into an equivalent master problem with the
integrality restriction on the new master variables. The key
observation is that Manne’s dominant plans are only a sub-
set of the set of extreme points needed.

Step 1. Equivalent MIP Dantzig-Wolfe Reformulation.
Let p = �xpi � spi � ypi � be an extreme point of conv(Xi� and
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let P i be the set of all the extreme points of conv(Xi).
For each extreme point p of conv(Xi), we define a new
variable zip. The correct application of the Dantzig-Wolfe
decomposition principle requires substituting the original
variables by a convex combination of the extreme points of
the substructure in the objective function (13) and the link-
ing constraints (14). The relationship between the original
production and setup variables and the convex combination
is given in (16) and (17). The integrality constraints must be
imposed on the original setup variables (18). For the pro-
duction variables, we can omit this relationship (17). The
convexity constraint (15) and nonnegativity constraint (19)
enforce a convex combination. The Step 1 formulation is,
then, as follows:

Min
∑
i∈I

∑
p∈Pi

(
fcis

p
i0+

∑
t∈T
�scity

p
it+vcitxpit+hcitspit�

)
zip� (13)

s.t.
∑
i∈I

∑
p∈Pi
�y
p
itstit+xpitvtit�zip�capt ∀t∈T � (14)

∑
p∈Pi
zip=1 ∀i∈ I� (15)

yit=
∑
p∈Pi
y
p
itz
i
p ∀i∈ I�∀t∈T � (16)

xit=
∑
p∈Pi
x
p
itz
i
p ∀i∈ I�∀t∈T � (17)

yit ∈�0�1� ∀i∈ I�∀t∈T � (18)

zip�0 ∀i∈ I�∀p∈P i� (19)

Step 2. Alternative Description of the Set of Extreme
Points. In the first step, we defined P i generally as the
set of all the extreme points of conv(Xi�. In this second
step, we define this set more explicitly. Proposition 1 states
that P i consists of all the feasible solutions of Xi that also
satisfy the Wagner-Whitin property. This set is much larger
than the set of the 2m dominant plans that Manne used
because the set of extreme points also includes nondomi-
nant plans satisfying the Wagner-Whitin property, in which
it is possible that there is a setup, but no production for
some time periods. In Proposition 2, we establish the exact
cardinality of this set.

Proposition 1. P i = ��xi� si� yi� � �xi� si� yi� ∈ Xi; si� t−1xit
= 0 ∀ t ∈ T �.
Proof. See Appendix A. �

Proposition 2. �P i� = 3m.

Proof. For each of the m periods, there are exactly three
possibilities for the setup and production variable: yit = 0
and xit = 0; yit = 1 and xit = 0; yit = 1 and xit > 0. Com-
bining the possibilities over the m periods so that both the
constraints of Xi and the Wagner-Whitin condition are sat-
isfied gives 3m extreme points in total. �

For each setup schedule q ∈Qi, we define the subset Qiq
of associated setup schedules as follows:

Qiq={
�yi1�����yim� �yit�yqit ∀t∈T � yit ∈�0�1� ∀t∈T

}
�

Only if there is a setup in setup schedule q for a specific
period, is a setup possible, but not required, for that period
in a setup schedule in the subset. If there are s setups in
schedule q, then Qiq contains 2s setup schedules. For each
setup schedule v ∈ Qiq , the associated dominant Wagner-
Whitin production quantities xvit are uniquely defined (6).
The setup schedule q can be combined with any of the
Wagner-Whitin production plans xvi � v ∈ Qiq to form an
extreme point. Because we have established a one-to-one
relationship between extreme points of Xi and the feasible
solutions satisfying the Wagner-Whitin property, we can
now redefine P i as follows:

P i = {
�xvi � s

v
i � y

q
i � � q ∈Qi� v ∈Qiq

}
�

Step 3. Rewriting the Dantzig-Wolfe Reformulation. We
rewrite the model in terms of convex combinations of
extreme points, using the fact that we can define the set P i

in terms of Qi and Qiq�
∑
p∈Pi zip =

∑
q∈Qi

∑
v∈Qiq ziqv. The

variable ziqv refers to the extreme point formed by taking
setup schedule q ∈ Qi and the dominant Wagner-Whitin
production plan associated with the setup schedule v ∈Qiq .
The Step 3 formulation, then, is as follows:

Min
∑
i∈I

∑
q∈Qi

∑
v∈Qiq

(
fcis

v
i0+

∑
t∈T
�scity

q
it+vcitxvit+hcitsvit�

)
ziqv�

(20)

s.t.
∑
i∈I

∑
q∈Qi

∑
v∈Qiq
�y
q
itstit+xvitvtit�ziqv�capt ∀t∈T � (21)

∑
q∈Qi

∑
v∈Qiq

ziqv=1 ∀i∈ I� (22)

yit=
∑
q∈Qi

∑
v∈Qiq

y
q
itz
i
qv ∀i∈ I�∀t∈T � (23)

yit ∈�0�1� ∀i∈ I�∀t∈T � (24)

ziqv�0 ∀i∈ I�q∈Qi�v∈Qiq� (25)

Step 4. Integrality Constraints. Define a new variable
zsiq as follows:

zsiq =
∑
v∈Qiq

ziqv ∀q ∈Qi� ∀ i ∈ I �

This enables us to rewrite the original setup variables (23):

yit =
∑
q∈Qi

∑
v∈Qiq

y
q
itz
i
qv =

∑
q∈Qi
y
q
it

( ∑
v∈Qiq

ziqv

)

= ∑
q∈Qi
y
q
itzs

i
q ∀ i ∈ I� ∀ t ∈ T �

and the convexity constraint (22) as
∑
q∈Qi zsiq = 1 ∀ i ∈ I .

We next prove the equivalence between the integrality con-
straints on the original variables yit and the integrality con-
straint on the new master variables zsiq .
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Proposition 3. yit ∈ �0�1�⇔ zsiq ∈ �0�1�.
Proof. (1) yit ∈ �0�1�⇐ zsiq ∈ �0�1�. The restrictions that
zsiq ∈ �0�1� and

∑
q∈Qi zsiq = 1 ∀ i ∈ I imply that exactly

one zsiq will be equal to one in the sum
∑
q∈Qi zsiq . Because

y
q
it ∈ �0�1�, it follows that

∑
q∈Qi y

q
itzs

i
q = yit ∈ �0�1�.

(2) yit ∈ �0�1�⇒ zsiq ∈ �0�1�. Given that yit ∈ �0�1�,
assume that there exists a feasible solution in which for
some product i, we have a fractional solution in the zsiq vari-
ables, i.e., ∃qi1� qi2 ∈Qi � qi1 �= qi2; zsiq1+zsiq2 = 1; zsiq1� zs

i
q2 

�0�1�; zsiq1� zs
i
q2 � 0. Because the two setup schedules qi1,

qi2 are different, there is at least one period k for which
y
q1
ik �= yq2ik . Combined with the fact that yq1ik � yq2ik ∈ �0�1�, this
implies that yik =

∑
q∈Qi y

q
ikzs

i
q = yq1ik zsiq1 + yq2ik zsiq2  �0�1�.

This is in conflict with the fact that yit ∈ �0�1�—hence, our
assumption that a solution exists in which some of the zsiq
variables are fractional is wrong. �

Due to Proposition 3, we can drop the integrality con-
straints on the original yit variables and impose the integral-
ity constraints on the new master variables zsiq . As a result,
we can also drop the definition constraints for the yit vari-
ables. Consequently, this new formulation does not contain
any of the original variables xit and yit and is as follows:

Min
∑
i∈I

∑
q∈Qi

∑
v∈Qiq

(
fcis

v
i0 +

∑
t∈T
�vcitx

v
it +hcitsvit�

)
ziqv

+∑
i∈I

∑
q∈Qi

(∑
t∈T
scity

q
it

)
zsiq� (26)

s.t.
∑
i∈I

∑
q∈Qi
y
q
itstitzs

i
q +

∑
i∈I

∑
q∈Qi

∑
v∈Qiq

xvitvtitz
i
qv � capt

∀ t ∈ T � (27)∑
q∈Qi
zsiq = 1 ∀ i ∈ I� (28)

zsiq =
∑
v∈Qiq

ziqv ∀ i ∈ I� q ∈Qi� (29)

zsiq ∈ �0�1� ∀ i ∈ I� q ∈Qi� (30)

ziqv � 0 ∀ i ∈ I� q ∈Qi� v ∈Qiq� (31)

The variables have the following interpretation: zsiq = 1 if
for product i setup schedule q is selected, 0 otherwise; and
ziqv is the fraction used of the Wagner-Whitin production
plan of setup schedule v ∈ Qiq . The convexity constraint
(28) together with the integrality constraints on the ziqv
variables (30) enforces the selection of exactly one setup
schedule for each item. To determine the production quanti-
ties, we make a convex combination of the Wagner-Whitin
production plans associated with setup schedules from the
subset of the chosen setup schedule (29). The intuitive idea
behind the use of this subset is that all feasible produc-
tion quantities for a given setup schedule can be obtained
as a convex combination of the production quantities of
the 2m different Wagner-Whitin production plans. Obvi-
ously, the Wagner-Whitin production plans in which there

is production in a time period for which the chosen setup
schedule does not have a setup can be excluded because
you cannot have production in the first place if there is
no setup. Finally, constraint (27) is the capacity constraint,
taking into account both the setup times and variable pro-
duction times.
In this model, we have overcome the problem of Manne’s

formulation by separating the integer setup and the contin-
uous production quantity decisions using the variables zsiq
and ziqv. We have proven that the formulation (26)–(31) is
equivalent to the MIP Dantzig-Wolfe decomposition refor-
mulation. For the LP relaxation of this reformulation, we
can substitute out the zsiq variable by constraint (29). The
optimal value of the resulting LP, �vDWCL, is the same as
the optimal solution of Manne’s model, �vM . The proof is
presented in Appendix B.

Step 5. Formulation with Fewer Variables. In a final step,
we further simplify the formulation. The cost coefficient of
the ziqv variable, i.e., fcis

v
i0+

∑
t∈T �vcitxvit+hcitsvit�, does not

depend on q, but only on v. The same observation holds for
the capacity coefficient, i.e., xvitvtit . Hence, we can define
a new variable: zpiv =

∑
q∈Qi �v∈Qiq ziqv. For the chosen setup

schedule, constraint (35) enforces that the sum of the asso-
ciated production plans must be larger than one. However,
because this is a minimization problem with positive objec-
tive function coefficients (i.e., assuming positive production
and holding cost coefficients), their sum will equal exactly
one. The constraint is still valid for the other setup sched-
ules because their value zsiq will be zero. This formulation
has 2 ∗ 2m variables and is as follows:

Min
∑
i∈I

∑
v∈Qi

(
fcis

v
i0 +

∑
t∈T
�vcitx

v
it +hcitsvit�

)
zpiv

+∑
i∈I

∑
q∈Qi

(∑
t∈T
scity

q
it

)
zsiq� (32)
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itstitzs
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∑
v∈Qi
xvitvtitzp

i
v � capt ∀ t ∈ T � (33)

∑
q∈Qi
zsiq = 1 ∀ i ∈ I� (34)

zsiq �
∑
v∈Qiq

zpiv ∀ i ∈ I� q ∈Qi� (35)

zsiq ∈ �0�1� ∀ i ∈ I� q ∈Qi� (36)

zpiq � 0 ∀ i ∈ I� q ∈Qi� (37)

The existence of such a huge number of variables in the
various formulations makes the problem well suited for col-
umn generation.

4. The Branch-and-Price Algorithm
In this section, we describe the most important building
blocks of the algorithm. We start with an initial heuristic
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that provides a good upper bound. Next, we do column
generation to find the LP optimum, which is a lower bound
for the IP optimum. We speed up the column generation
process by using a combination of simplex and subgradi-
ent optimization. At each iteration, we also try to construct
feasible upper bounds. Finally, we combine column genera-
tion and branch-and-bound in a branch-and-price algorithm.
Our algorithm is based on formulation (20)–(25).

4.1. Initial Heuristic

The first step in the algorithm is finding a heuristic upper
bound. We use the efficient algorithm proposed by Trigeiro,
Thomas, and McClain (1989) (TTM). This heuristic con-
sists of Lagrange relaxation and a smoothing heuristic to
create feasible production plans. We improve the upper
bounds found by TTM in two ways. First, we fix all the
setup variables yit to one or zero according to the solution
proposed by the TTM heuristic. If there is any production
in period t for item i, we fix the setup variable yit to one,
otherwise to zero. Next, we solve the remaining problem
to find the optimal production quantities. It is well known
that the resulting problem after fixing the setup variables
is a network problem (e.g., Thizy and Van Wassenhove
1985) for which efficient algorithms exist. This procedure
is referred to as the network heuristic (NH). A second
improvement is a lot elimination heuristic (LEH). Start-
ing again from the setup solution given by TTM, we try
to improve this solution by checking if we can eliminate
a setup. We first check the items with the highest setup
cost, starting with the setup at the end of the time horizon
and moving to the beginning. If the setup variable equals
one, we fix it to zero and solve a new network problem to
find the optimal production quantities. If the upper bound
improves, we keep that setup variable at zero; otherwise,
we set it back to one and continue.

4.2. Column Generation at the Root Node

Next, we start the column generation procedure (CG). We
first add some initial columns to the master. For each
item, we add the uncapacitated Wagner-Whitin solution.
Columns where all the demand is met from initial inventory
are also added. The single-item uncapacitated subproblem
is solved using an efficient implementation of the Wagner-
Whitin algorithm. Let �vrDWCL be the objective value of the
restricted master at pricing step r and let rcri be the reduced
costs of the columns that we generate at iteration r . If no
column was added for an item, the reduced cost equals
zero. At each iteration, we calculate a lower bound on
�vDWCL, the optimal LP solution of the Dantzig-Wolfe refor-
mulation (Lasdon 1970):

LB= �vrDWCL +
∑
i∈P
rcri � (38)

If the current restricted master solution, �vrDWCL, is equal to
the lower bound (38), then no column prices out favorably
and we stop the column generation process.

4.3. Hybrid Simplex/Subgradient Optimization

To accelerate the column generation algorithm, we combine
it with a Lagrange relaxation approach in a hybrid sim-
plex/subgradient optimization algorithm. In the Lagrange
problem, the capacity constraint is dualized into the objec-
tive function with a specific set of nonnegative multipliers u
(Kleindorfer and Newson 1975). The Lagrange problem
also decomposes into single-item uncapacitated lot-sizing
problems. A strong relationship exists between Dantzig-
Wolfe decomposition and Lagrange relaxation (Geoffrion
1974). The optimal values of the relaxed Dantzig-Wolfe
reformulation and the Lagrange dual are the same. Because
both methods have the same subproblem, we can use both
to generate columns. Also, the optimal dual variables for
the linking constraints in the Dantzig-Wolfe master corre-
spond to optimal multipliers for the complicating constraint
in the Lagrange objective function. The hybrid simplex/
subgradient optimization procedure iterates between col-
umn generation and Lagrange relaxation, and exchanges
information. Basically, it consists of a nested double loop.
After solving the restricted master by the simplex method
in the outer loop, we perform several iterations of Lagrange
relaxation in the inner loop. Subgradient optimization is
used to update the dual prices, starting from the latest
simplex dual prices. This provides us with new columns
because the Lagrange subproblem is identical to the column
generation subproblem. Next, we add the new columns that
are generated in the Lagrange iterations and we reoptimize
the restricted master. This procedure speeds up the con-
vergence of the column generation process. Further details
on this procedure can be found in Degraeve and Jans
(2003), Degraeve and Peeters (2003), and Huisman et al.
(2005).

4.4. Calculating Upper Bounds

Calculating feasible upper bounds during column genera-
tion is done in two ways. In a first heuristic, we start from
the optimal LP solution of the current master. We round the
fractional setup variables to either one or zero according
to some cutoff point. Next, a network problem is solved to
determine the optimal production quantities for this fixed
setting of the setup variables. This procedure is repeated for
different values of cutoff points (repeated rounding heuris-
tic (RRH)). We typically observe a U shape in the solu-
tion values when increasing the cutoff point. Therefore, we
cut this heuristic short when the solution starts to increase.
This heuristic is done at every pricing step of the column
generation iteration, starting from the new primal solution
given by the current master. Our preliminary experiments
have indicated that this yields better results than when the
heuristic is applied only once at termination. In a second
heuristic, we take the solutions given by the subproblems
and perform the smoothing subroutine proposed by Trigeiro
et al. (1989).



Degraeve and Jans: New Dantzig-Wolfe Reformulation and Branch-and-Price Algorithm for the CLST
Operations Research 55(5), pp. 909–920, © 2007 INFORMS 915

4.5. Branch and Price

Branching on the new master variables zsiq in formula-
tion (26)–(31) or (32)–(37) would lead to an unbalanced
tree. Instead, we branch on the original variables yit =∑
q∈Qi

∑
v∈Qiq y

q
itz
i
qv in formulation (20)–(25). By branch-

ing on the original setup variables, we actually branch
on groups of columns, and this will lead to a more bal-
anced enumeration tree (Vanderbeck 2000, Barnhart et al.
1998). Therefore, the implementation of our branch-and-
price algorithm is based on formulation (20)–(25). The
branch-and-price algorithm consists of three major subrou-
tines: branch, twin, and backtrack. Our search strategy is
depth first, where branching is done on the current node.
The branching decisions are enforced by adapting or delet-
ing old columns and generating new ones. We use insights
from formulation (26)–(31) in the branching scheme. When
we branch up—i.e., we force yit to one—we do not delete
the columns in the master that do not have a setup in
period t, but we adjust them, enforcing a setup by adapt-
ing the column’s cost and capacity requirement to reflect
this setup. In this way, we ensure that the setup cost and
setup time is properly accounted for in all the available
columns according to the branching decision. The advan-
tage of adjusting the columns is that we avoid the potential
need for regenerating these columns later. In the subprob-
lem, we enforce a setup by fixing the setup variable to
one, but this does not necessarily imply that there must be
some positive production. This also allows us to work with
a master that contains only the convexity (22) and capacity
(21) constraints in each node of the tree. The simplicity
of this master directly determines the effectiveness of our
solution approach. The columns consisting of initial inven-
tory only are used to maintain feasibility at each node in
the branch-and-price algorithm. Details on the branch, twin,
and backtrack procedures can be found in Degraeve and
Jans (2003). After we have imposed the branching adjust-
ments, we solve the master. If the current objective value is
larger than or equal to vUB, our best upper bound, then we
do column generation to see if the objective value can drop
under this upper bound by generating more columns. We
stop column generation at a node if no column prices out.
We do not have to investigate a node further if during col-
umn generation the lower bound on the master (38) exceeds
the current upper bound vUB. At each step of the column
generation process, we also do the network and smoothing
heuristic to obtain better upper bounds.

5. Computational Results
In §§5.1 to 5.4, we report in detail on computational exper-
iments with the set of 540 test instances used by TTM.
The instances have a time horizon of 20 periods, and the
total set consists of three subsets with 180 problems for
each case of 10, 20, or 30 products. We report the aver-
ages for each class of 10, 20, and 30 products. In §5.5,
we discuss results on other data sets. Our algorithms were

coded in Fortran using the WATCOM Fortran compiler 10.6
and linked with the LINDO library version 5.3 (Schrage
1995). We use the network solver subroutine available in
the LINDO library for solving the network problems. The
tests were done on a Pentium III 750 MHz computer under
the Windows 2000 operating system. CPU times are given
in seconds, and the gap is calculated as the percentage dif-
ference between the best upper bound and lower bound,
compared to the best lower bound.

5.1. Initial Heuristics

We tested the effectiveness of the various algorithmic steps
in several experiments. The first heuristic (TTM) is the
Trigeiro et al. (1989) algorithm. We used their original code
and experimented with different Lagrange iteration limits.
For further experiments, we use 300 iterations (TTM-300)
because our initial experiments indicated that the improve-
ment leveled off beyond this limit. TTM performed 150
steps of the Lagrange iteration (TTM-150). In Table 1,
we report on the average gap between the Lagrange lower
bound and best feasible solution and the CPU time. The
remainder of Table 1 summarizes the gap and CPU time
for the improvement heuristics performed after TTM. The
network heuristic (NH) further reduces the gap with a rel-
atively small amount of extra CPU time. After the network
heuristic, we do the lot elimination heuristic (LEH), with a
limited search over the first 0�3 ∗n ∗m setup variables that
are at one.

5.2. Solving the Root Node

Up to this point, the gap is still calculated relative to
the Lagrange lower bound from TTM, which is equal to
or lower than the optimal column generation-based lower
bound �vDWCL. In the next step, column generation is per-
formed at the root node to obtain this exact lower bound
�vDWCL. Comparing the heuristic solutions of LEH to the
exact lower bound �vDWCL obtained by column genera-
tion instead of the Lagrange lower bound results in an
average gap of 3.13%, 1.22%, and 0.78% for 10, 20,
and 30 products, respectively. During column generation,
we also perform some primal heuristics. We implement
the repeated rounding heuristic (RRH) and the smoothing
heuristic (SH), as discussed in §4. We speed up the column

Table 1. Initial heuristics and solving the root node
problem.

10 products 20 products 30 products

Gap Time Gap Time Gap Time

TTM-150 3�81 0�24 1�57 0�43 1�09 0�57
TTM-300 3�71 0�43 1�50 0�79 1�05 1�07
NH 3�58 0�48 1�44 0�84 1�02 1�13
LEH 3�33 0�55 1�35 1�11 0�95 1�72
CGH 3�10 0�91 1�20 1�83 0�72 2�90
CGS 3�07 1�43 1�20 2�71 0�71 4�09
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generation process by using the hybrid simplex/subgradient
optimization procedure. Within two simplex iterations, we
do a maximum of 25 Lagrange iterations. We report the
results of the best upper bound after column generation
with the hybrid method in the row CGH in Table 1. We also
report on the algorithm where we do column generation at
the root node with only simplex optimization (CGS). CGS
has a substantially larger CPU time and a slightly better
gap compared to CGH. With CGH, we do fewer pricing
iterations and hence perform the heuristics (RRH and SH)
fewer times. Therefore, we have less chance of finding a
good upper bound. The slightly better quality of the upper
bound for CGS accounts for the better gap.

5.3. Branch-and-Price

In our branch-and-price algorithm, we tested five differ-
ent branching strategies, depending on the selection of the
branching variable:
B&P1: First fractional variable, order the items by input

list,
B&P2: First fractional variable, order the items by

decreasing setup cost,
B&P3: Fractional variable closest to 0.5,
B&P4: Fractional variable closest to zero or one,
B&P5: Fractional variable closest to one.
In a heuristic implementation of the branch-and-price

algorithm, we fix some of the yit variables depending on
their value in the primal solution at the end of CG at the
root node. We fix all the variables below 0.05 to zero and
above 0.95 to one. Next, we solve the smaller problem
with the remaining variables optimally, using the branch-
and-price algorithm. We call this reduced branch-and-price
(RB&P). For all the implementations reported, we used a
limit of 2,000 nodes. The summary results for the various
branching strategies are given in Table 2.

Table 3. Gap results for the full factorial experiment.

10 products 20 products 30 products

TTM Root B&P5 TTM Root B&P5 TTM Root B&P5

Capacity usage
Low 0�79 0�76 0�58 0�17 0�17 0�13 0�13 0�08 0�05
Medium 2�23 2�01 1�48 0�65 0�62 0�49 0�29 0�29 0�24
High 8�10 6�53 5�66 3�68 2�80 2�52 2�72 1�81 1�55

TBO
Low 1�91 1�59 1�51 0�94 0�67 0�64 0�75 0�42 0�39
Medium 2�54 2�28 1�77 0�99 0�89 0�76 0�62 0�50 0�43
High 6�67 5�45 4�45 2�58 2�02 1�74 1�77 1�25 1�03

Demand variability
Medium 3�99 3�34 2�61 1�57 1�23 1�07 1�17 0�80 0�66
High 3�42 2�87 2�54 1�44 1�16 1�03 0�92 0�65 0�57

Setup time
Low 3�85 3�18 2�60 1�73 1�29 1�12 1�30 0�85 0�68
High 3�56 3�03 2�55 1�27 1�10 0�98 0�80 0�60 0�55

Average 3�71 3�10 2�58 1�50 1�20 1�05 1�05 0�72 0�62

Table 2. Results for the branch-and-price algorithm
(maximum of 2,000 nodes).

10 products 20 products 30 products

Gap Time Gap Time Gap Time

B&P1 2�83 45�80 1�14 65�32 0�69 99�00
B&P2 2�75 51�49 1�08 75�85 0�65 111�71
B&P3 2�99 52�68 1�17 74�30 0�71 110�76
B&P4 2�74 32�86 1�09 51�63 0�65 83�36
B&P5 2�58 48�10 1�05 70�87 0�62 116�05

RB&P1 2�79 20�96 1�11 26�44 0�65 31�79
RB&P2 2�69 21�72 1�07 25�50 0�63 37�32
RB&P3 2�84 22�46 1�10 28�72 0�64 38�11
RB&P4 2�76 18�96 1�08 23�84 0�67 31�35
RB&P5 2�74 24�53 1�06 27�87 0�64 35�50

On average, we obtain the smallest gaps for the fifth
branching strategy, where we branch on the fractional vari-
able closest to one. B&P4, where we branch on the variable
closest to zero or one takes, on average, the least CPU time,
and is almost always better than B&P1, B&P2, and B&P3.
The reduced branch-and-price is roughly two to three times
faster compared to the optimal implementation. The gap
can be either better or worse. RB&P2 seems to give the
best gaps on average. With TTM, 10.7% of the instances
could be solved to optimality. This percentage increases to
28.5% with B&P5.
The data set from TTM is constructed according to a

full factorial experiment with five factors: capacity utiliza-
tion (low, medium, or high), number of items (10, 20, or
30), time between orders (TBO) (low, medium, or high),
demand variability (medium or high), and setup time (low
or medium). In Table 3, we compare the effect on the gap of
the different factors, as calculated with three different pro-
cedures: the TTM heuristic, the hybrid column generation
at the root node, and the branch-and-price algorithm. We
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Table 4. CPU times for the full factorial experiment.

10 product 20 product 30 product

TTM Root B&P5 TTM Root B&P5 TTM Root B&P5

Capacity usage
Low 0�37 0�62 24�16 0�65 1�19 38�34 0�76 1�66 58�13
Medium 0�44 0�83 44�44 0�79 1�63 73�92 1�09 2�37 118�56
High 0�49 1�29 75�70 0�92 2�68 100�35 1�36 4�68 171�46

TBO
Low 0�34 0�85 36�82 0�58 1�68 46�96 0�71 2�46 83�31
Medium 0�45 0�86 50�44 0�83 1�83 77�13 1�14 2�84 118�77
High 0�51 1�04 57�04 0�94 1�98 88�53 1�37 3�41 146�08

Demand variability
Medium 0�41 0�90 47�90 0�76 1�80 70�29 1�04 2�88 117�76
High 0�45 0�93 48�30 0�81 1�86 71�46 1�11 2�93 114�34

Setup time
Low 0�43 0�94 50�03 0�80 1�92 73�64 1�08 3�02 120�05
High 0�43 0�89 46�17 0�77 1�74 68�11 1�06 2�79 112�05

Average 0�43 0�91 48�10 0�79 1�83 70�87 1�07 2�90 116�05

give separate results for the problems with 10, 20, and 30
items. In Table 4, we report the CPU times. The results
confirm the conclusions of TTM. Demand variability and
setup time have a minor effect on the gap and CPU times.
The relative differences in gap between medium and high
demand variability and low and high setup times seem to
decrease for the solutions at the root node and at the end
of the branch-and-price algorithm, compared to the TTM
heuristic. If the capacity is more constrained, the problems
become more difficult to solve with respect to both the
gap and CPU time. Problems with a higher TBO are also
more difficult to solve. The effect on the gap of a low and
medium TBO seems only minor, whereas the effect of a
high TBO is more apparent.

5.4. Comparison with Other Approaches

Compared to the Lagrange heuristic by TTM, our algo-
rithm is able to reduce the gaps substantially further. Other
approaches have been proposed in the literature to solve
the CLST. Belvaux and Wolsey (2000) describe a branch-
and-cut algorithm that is specifically developed to solve lot-
sizing problems. They report on six instances taken from

Table 5. Comparison of branch-and-cut and branch-and-price.

Branch-and-cut Branch-and-price
Belvaux and Wolsey (2000) (B&P5)

LP IP Time Gap LP IP Time Gap

Tr6-15 (G30) — — — — 37�103�1 37�809 33 1�90
Tr6-15 (G30b) 37�213�3 37�721∗ 38�4 1�09 37�201�2 38�162 29 2�51
Tr6-30 (G62) 60�979�4 61�806 900 1�36 60�946�2 62�644 359 2�79
Tr12-15 (G53) 73�858�2 74�799 900 1�27 73�847�9 75�035 66 1�61
Tr12-30 (G69) 130�177 132�650 900 1�90 130�177�2 131�234 215 0�81
Tr24-15 (G57) 136�366 136�872 900 0�37 136�365�7 136�860 44 0�36
Tr24-30 (G72) 287�753 288�424 900 0�23 287�753�4 288�383 306 0�22

∗Indicates a proven optimal solution.

a test set used by TTM. Belvaux and Wolsey (2000) used
unit variable production times vtit = 1 for all their data sets,
whereas for one of them, specifically G30, the original data
set has fractional variable production times. In Table 5, we
report the results for the test problems. G30b refers to the
G30 data set with unit variable production times. Belvaux
and Wolsey use a 200 MHz computer under Windows NT
and set a time limit of 900 seconds. We have a limit of
2,000 nodes. Although we cannot make any robust conclu-
sion based on such a limited comparison, the branch-and-
cut system seems to perform better on the smaller problems
and our algorithm seems to perform slightly better on the
larger problems. For the smaller problems, their branch-
and-cut algorithm gives a better lower bound at the root
node, whereas for the larger problems, both procedures
yield the same lower bound. The results indicate that these
CLST problems are indeed hard to solve.
The problem can also be solved using the network refor-

mulation (Eppen and Martin 1987). We used the MIP solver
of LINDO. The row EMLP in Table 6 indicates the time
needed to compute the LP relaxation. This is much higher
than the time it takes with the column generation approach
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Table 6. Variable redefinition results.

10 products 20 products 30 products

Gap Time Gap Time Gap Time

EMLP 1.23 5.08 12.52
EMIP 4�49 2,949 2�94 6,077 2�35 4,904

(see Table 1). The LP relaxation of the network reformula-
tion gives the same lower bound, but does not provide an
upper bound. The row EMIP reports on the gap and com-
putation time for the IP solution. For 10 and 20 products,
we set a pivot limit of 10 million; for 30 products, we set
a pivot limit of five million. We observe that the network
reformulation is much slower and does not give the same
good-quality solutions as our procedure.
Finally, Gopalakrishnan et al. (2001) develop a cus-

tomized tabu search algorithm for the CLST. They test their
procedure on the data set from TTM with the 540 prob-
lem instances and report an average gap of 4.01% and an
average CPU time of 97 seconds on a Pentium 550 MHz
processor. With our algorithm, we obtain an average gap
of 1.67% and an average CPU time of 1.9 seconds at the
root node (CGH). For our branch-and-price implementation
(B&P5), we have an average gap of 1.42% and average
time of 79 seconds. Our algorithm is clearly superior to the
tabu search.

5.5. More Results and Comparisons

We also tested our procedure on other data sets from TTM.
These are 70 instances from the F-set and 71 from the

Table 7. Results for F and G data sets from Trigeiro et al. (1989).

Eppen and Martin
Degraeve and Jans (2003) (1987)

Initial heuristics CG root B&P B&B

Gap Time Gap Time Gap Time Gap Time

F 3�69 0�17 3�55 0�28 2�87 28�45 8�99 721�63
G6-15 4�96 0�18 4�73 0�33 3�82 29�30 5�82 770�96
G12-15 1�11 0�34 1�07 0�56 1�00 45�21 3�69 1�994�30
G24-15 0�36 0�75 0�36 1�10 0�33 62�11 0�45 3�754�06
G6-30 3�22 0�68 3�22 1�06 2�86 317�13 2�16 2�871�99
G12-30 1�15 1�49 1�15 2�12 0�87 240�32 0�86 5�690�63
G24-30 0�24 3�43 0�24 4�66 0�20 383�49 1�00 11�596�28

Table 8. Results for data sets from Cattrysse et al. (1990).

Cattrysse et al.
Degraeve and Jans (2003) (1990)

Initial heuristics CG root B&P Best heuristics

Gap Time Gap Time Gap Time Gap Time

Set 1 8.06 0.63 0.81 1.37 0.70 44�36 1.34 373
Set 2 1.80 1.09 1.16 1.56 0.99 114�67 3.02 1�352
Set 3 6.66 3.46 5.46 5.71 4.85 1,527.86 9.28 3�854

G-set. All the instances in the F-set are 6 products and 15
period problems. The G-set consists of 46 instances with
6 products and 15 periods and 5 instances for each of the
cases with 12 products and 15 periods, 24 products and
15 periods, 6 products and 30 periods, 12 products and 30
periods, and 24 products and 30 periods. In Table 7, we
give the gap and CPU time for the initial heuristic, which
includes TTM, NH, and LEH, for the column generation
at the root node; and for the branch-and-price algorithm
using B&P5 with a 2,000 node limit. We compare this to
the Eppen and Martin formulation solved by LINDO with
a maximum of five million pivots. Our branch-and-price
algorithm performs better than the network reformulation.
Finally, we tested our algorithm on the capacitated lot-

sizing problem without setup times. We did our computa-
tional experiments on the data sets from Cattrysse et al.
(1990). They have three data sets with 40 instances each.
The first one has instances with 50 items and 8 periods,
the second has 20 items and 20 periods, and the third has
8 items and 50 periods. In Table 8, we report the average
gap and time for the initial heuristic, the column generation
at the root node, and the branch-and-price algorithm using
B&P5 with a 2,000 node limit. We compare this with the
results from Cattrysse et al. (1990) for their best implemen-
tation, which is called Heur4 in their paper. The gaps are
calculated compared to our lower bounds. We also give the
average time that they reported, using an Olivetti M24 with
an 8086/8087 processor and 8 MHz. Our gaps are substan-
tially better compared to the solutions obtained by Cattrysse
et al. For the first set, the column generation and branch-
and-price algorithm are very effective in further closing the
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gap compared to the initial heuristic. For the second and
third set, there is less improvement, but the gaps are still
much smaller compared to the Cattrysse et al. algorithm.

6. Conclusion and Future Research
In this paper, we present a MIP Dantzig-Wolfe reformula-
tion for the capacitated lot-sizing problem with setup times.
In this new formulation, the integer setup and the contin-
uous production quantity decisions are separated. As such,
we overcome the deficiency of the Dantzig-Wolfe reformu-
lation proposed by Manne (1958), which can only be used
to calculate a lower bound. We also describe an imple-
mentation of a branch-and-price algorithm. A combination
of simplex optimization and subgradient updating is used
to speed up the column generation process. Computational
results show that B&P provides good results for the CLST.
A limited comparison suggests that it is competitive with a
state-of-the-art branch-and-cut system. Further, it is supe-
rior to other optimal procedures such as the network refor-
mulation approach and to heuristics such as a customized
tabu search algorithm.
Extensions of this research can focus on both the for-

mulation and the algorithm. First, many extensions of the
lot-sizing problem have been proposed, such as the backlog
case and multilevel production. It would be interesting to
adapt our approach for these extensions. For multilevel lot
sizing, reformulations with echelon stock have been used to
decompose the problem per level. Second, the combination
of simplex optimization and subgradient updating, which
is used to speed up the column generation process, could
be useful for other formulations such as the generalized
assignment problem or the simple plant location problem.
Further computational improvements could be obtained by
combined column and row generation (Vanderbeck 1998).
Third, in the CLST, the continuous variable appears in both
the subproblem and master. As a result, an extreme point of
the subproblem is not necessarily an extreme point of the
overall problem. This is precisely the deficiency in Manne’s
formulation. Vanderbeck and Savelsbergh (2006) discuss a
general theoretical framework for Dantzig-Wolfe decompo-
sition for MIPs. Our paper complements this general frame-
work with an analysis of a specific MIP problem, namely,
the capacitated lot-sizing problem. It would be interesting
to investigate whether the ideas presented here can be trans-
ferred to the decomposition of other MIP problems.

Appendix A. Proof of Proposition 1
The proof consists of two parts:
(1) If �x1i � s

1
i � y

1
i � is an extreme point of conv(Xi�, then

�x1i � s
1
i � y

1
i � has the Wagner-Whitin property and �x1i � s

1
i �

y1i � ∈ ��xi� si� yi� � �xi� si� yi� ∈ Xi� si� t−1xit = 0 ∀ t ∈ T �.
See Eppen and Martin (1987), Proposition 2.4, for the gen-
eral lot-sizing case.

(2) If

�x1i �s
1
i �y

1
i �∈

{
�xi�si�yi� ��xi�si�yi�∈Xi�si� t−1xit=0 ∀ t∈T }�

i.e., if it has the Wagner-Whitin property, then it is an
extreme point of conv(Xi�.
Following Definition 4.1 (Nemhauser and Wolsey 1988,

p. 93), �x1i � s
1
i � y

1
i � is an extreme point of conv(X

i� if there
do not exist two points �x2i � s

2
i � y

2
i �� �x

3
i � s

3
i � y

3
i � ∈ conv�Xi�,

�x2i � s
2
i � y

2
i � �= �x3i � s3i � y3i �, such that �x1i � s

1
i � y

1
i � = �1/2� ·

�x2i � s
2
i � y

2
i �+ �1/2��x3i � s3i � y3i �.

Given a point �x1i � s
1
i � y

1
i � ∈ ��xi� si� yi� � �xi� si� yi� ∈ Xi;

si� t−1xit = 0 ∀ t ∈ T �, suppose that there do exist two dif-
ferent points �x2i � s

2
i � y

2
i �� �x

3
i � s

3
i � y

3
i � ∈ conv�Xi�, such that

�x1i � s
1
i � y

1
i �= �1/2��x2i � s2i � y2i �+ �1/2��x3i � s3i � y3i �. We will

prove that then �x2i � s
2
i � y

2
i �= �x3i � s3i � y3i �.

Because y1i ∈ �0�1�, y2i � y3i � 1, y2i � y
3
i � 0, and y1it =

�1/2�y2it + �1/2�y3it , it follows that y1i = y2i = y3i .
Assume that there are exactly k periods with a strictly

positive production (0� k�m� in �x1i � s
1
i � y

1
i �. Define lv as

the index of the vth period with strictly positive production.
By definition, x1it = 0 ∀ t ∈ T \�l1� � � � � lk�, and therefore
x2it = x3it = 0 ∀ t ∈ T \�l1� � � � � lk� because x1it = �1/2�x2it +
�1/2�x3it and x

2
it� x

3
it � 0.

Because �x1i � s
1
i � y

1
i � satisfies the Wagner-Whitin prop-

erty, it follows that x1ilv =
∑lv+1−1
t=lv dit , v ∈ �1� � � � � k − 1�,

and x1ilk =
∑m
t=lk dit . Further, because of the Wagner-Whitin

property, we have s1i� lv−1 = 0, v ∈ �1� � � � � k�, which implies
that s2i� lv−1 = s3i� lv−1 = 0, v ∈ �1� � � � � k�, as s2it� s

3
it � 0.

Combined with the observation that x2it = x3it = 0 ∀ t ∈
T \�l1� � � � � lk�, this results in the conclusion that x2i� lv =
x3i� lv =

∑lv+1−1
t=lv dit for v ∈ �1� � � � � k − 1� and x2ik = x3ik =∑m

t=lk dit .
We conclude that �x2i � s

2
i � y

2
i � = �x3i � s3i � y3i �, and hence

we have proven that �x1i � s
1
i � y

1
i � ∈ ��xi� si� yi� � �xi� si� yi� ∈

Xi� si� t−1xit = 0 ∀ t ∈ T � cannot be written as the sum
of two different feasible points, and consequently, it is an
extreme point. �

Appendix B. Proof of Proposition
�vDWCL = �vM
Proposition. �vDWCL = �vM .
Proof. A variable ziqv� q �= v is dominated by zivv in the
LP relaxation of (20)–(25). Remember that the variable ziqv
refers to the extreme point formed by taking setup schedule
q ∈Qi and the Wagner-Whitin production plan according to
setup schedule v ∈Qiq . Both variables ziqv and zivv have the
same production quantities xvit , but a different setup sched-
ule: yqi for ziqv and y

v
i for z

i
vv. According to the definition

ofQiq , schedule v ∈Qiq has strictly fewer setups than sched-
ule q if q �= v. As a consequence, the total setup cost for
zivv (

∑
t∈T scityvit� is lower than or equal to the total setup

cost for ziqv (
∑
t∈T scity

q
it�, while the production and inven-

tory costs are equal. Further, the variable zivv has an equal or
lower capacity utilization (stity

v
it+vtitxvit ∀ t ∈ T � compared

to any other ziqv (stity
q
it+vtitxvit ∀ t ∈ T �. Consequently, there
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exists an optimal LP solution with ziqv = 0 ∀ i ∈ P�∀q ∈
Qi�∀v ∈Qiq� q �= v. The only variables left are the zivv vari-
ables, which are equivalent to the ziv variables in formula-
tion (9)–(12). Consequently, the LP relaxation of (20)–(25)
and Manne’s formulation (9)–(12) are equivalent and have
the same optimal objective value. �
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