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Asimplex computation for an arc-chain formulation of the maximal multi-commodity network flow problem
is proposed. Since the number of variables in this formulation is too large to be dealt with explicitly, the

computation treats non-basic variables implicitly by replacing the usual method of determining a vector to enter
the basis with several applications of a combinatorial algorithm for finding a shortest chain joining a pair of
points in a network.

History : Received October 1957.

1. Introduction
A problem of some importance in applications of
linear programming is the determination of maxi-
mal multi-commodity flows in networks. For exam-
ple, some of the linear programming problems which
have been proposed recently by Kalaba and Juncosa
in their studies of communication networks (1956)
can be cast in this form. Straightforward application
of the simplex method to such problems is usually
not feasible, since even small networks may gener-
ate linear programs which are too large for present
machine capacity. What is needed are specialized
computing schemes that take advantage of the struc-
ture of such problems. For the single commodity
case, various easy computations are known (Dantzig
and Fulkerson 1955; Ford and Fulkerson 1956, 1957),
but the multi-commodity problem has remained rela-
tively unexplored.

Consideration of simple examples makes it appear
that the multi-commodity flow problem is consider-
ably more complex than the single commodity one.
Certainly the nice combinatorial features of the sin-
gle commodity case are lost in the generalization—
simplex bases (for any formulation of the problem
known to us) are not triangular, hence addition and
subtraction do not suffice to solve such problems by
the simplex method, the max flow min cut theorem,
true for single commodity networks, is false (Ford
and Fulkerson 1956), and no simple-minded modifica-
tion of the labeling process (Ford and Fulkerson 1957)
seems to work.

The purpose of this note is to suggest a computa-
tion which makes some use of the structure of one
formulation of the multi-commodity problem within
the framework of a simplex computation. For this

particular formulation, the matrix of the linear pro-
gram is the incidence matrix of arcs vs. all chains
joining sources and sinks for the various commodi-
ties, and thus the number of variables is too large
to be dealt with explicitly. The suggested computa-
tion treats non-basic variables implicitly by replacing
the “pricing” operation of the simplex method (i.e.
the determination of a vector to enter the basis) with
several applications of a combinatorial algorithm for
finding a shortest chain joining a pair of points in a
network.

2. Arc-Chain Formulation
Let A1� � � � �Am be a list of the arcs of the network,
C1� � � � �Cn a list of all chains that join, for the various
commodities, all the sources for a commodity with all
sinks for the same commodity, and let A= �ars� be the
m×n incidence matrix of arcs vs. commodity chains:

ars =
{

1 if Cs contains Ar�

0 otherwise�
(1)

Thus, for example, if the network is that of Figure 1,
with sources P1�P2, sink P3 for one commodity, and
source P4, sink P1 for a second commodity, the matrix
A is as shown in Figure 2.

If we let xs� s = 1� � � � �n, denote the amount of com-
modity flow along Cs , and br the flow capacity of Ar ,
then the multi-commodity maximal flow problem is
represented by the linear program:

maximize
n∑

s=1

xs (2)

subject to the constraints
n∑

s=1

arsxs + xn+r = br� x1� � � � � xn+r � 0� (3)
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The assumption in (2) that commodities are valued
equally is not essential to the method we propose,
as will be clear from our discussion in the following
section. Another thing we wish to point out is that it is
immaterial whether the problem involves directed or
undirected arcs. Thus, for example, if there are “one-
way streets,” or if, in a communication network, say, it
is desired to place an upper bound on the number of
messages that can be transmitted from Pi to Pj , and an
upper bound on the messages that can be sent from
Pj to Pi, one considers two arcs, one from Pi to Pj , the
other from Pj to Pi, and directed chains from sources
to sinks.

Since the number of chains is usually very large
in practical applications, the arc-chain formulation of
the problem might seem to be impossible to deal
with computationally. Indeed, the enumeration of all
chains from commodity sources to sinks in a network
of moderate size would be a lengthy task, to say the
least. Fortunately, there is no need to write down the
entire matrix A, since the selection of a variable enter-
ing the basic set at any stage of the simplex com-
putation (or the recognition that a basis is optimal)
can be accomplished without explicit knowledge of
the non-basic column vectors of A. All we need is
the basis B = �brj � (or its inverse), a square submatrix
whose order is the number m of arcs in the network,
to compute the simplex multipliers �r �r = 1� � � � �m�
satisfying, for j = s1� � � � � sm,

m∑
r=1

�rbrj =
{

1 if j � n

0 if j > n�
(4)

We can then find a vector to bring into the basis
(or prove that the current basis is optimal) by the
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method of the next section. Once such a vector has
been found, determination of the vector leaving the
basis is accomplished in the usual way.

3. A Shortest Chain Algorithm
Suppose we have computed the �r in (4) correspond-
ing to a particular basis B. If some �r , is negative, then
the variable xn+r may be introduced into the basic set
with possibly an increase in the form (2), that is, the
unit vector having 1 in the r-th position, zeros else-
where, can be brought into the basis. (It may be that
this vector also represents a one-arc chain for some
commodity; in this case, a bigger increase in (2) might
result, of course, by taking the latter interpretation.)

Assume, therefore, that a stage has been reached
in the computation where all �r are non-negative. In
this case, the algorithm described below, which makes
no use of the full incidence matrix A, can be used
either to locate a column vector of A (i.e. a com-
modity chain in the network), that may be brought
into the basis, or to prove that the current basis is
optimal.

Let us interpret the �r as lengths of the arcs. We
wish to find a chain Cs , if one exists, whose length

m∑
r=1

�rars

is less than one, the coefficient of xs in (2). Thus, it
suffices to locate, for each commodity, a shortest chain
from the commodity sources to its sinks. If each of
the chains thus selected has length at least one, the
basis is optimal. Otherwise, a column vector of A cor-
responding to one of these chains may be introduced
into the basis.

The problem of locating a shortest chain from one
set of nodes to another set of nodes in a network
can be reduced to a standard transshipment problem
(Orden 1956), and may consequently be solved in var-
ious simple ways; see Ford (1956) and Orden (1956),
for example. The algorithm we describe is that of Ford
(1956). (In Ford (1956), the problem is considered to
be that of finding a shortest chain from one node to
another; to reduce our problem to this one, simply
join each node of the first set to a new node by an arc
of length zero, and similarly for the other set. We shall
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give a description which does not involve this device
explicitly, however.)

Let the set of sources for one commodity be S, the
sinks for the commodity T , and suppose the nodes of
the network are P1� � � � � PN . Let lij denote the length
of the arc joining Pi and Pj , i.e. if the arc Ar , joining
Pi and Pj corresponds to the simplex multiplier �r ,
set lij = �r . (If arcs are directed, then we let lij denote
the multiplier corresponding to the arc from Pi to Pj ,
hence in this case we may have lij �= lji, whereas in the
undirected case, lij = lji.) Initially assign to each node
Pi a number �i as follows:

�i =
{

0 for Pi ∈ S

� otherwise.

Now scan the network for an arc PiPj such that

�i + lij < �j �

Replace �j by �i+ lij if such an arc is found. Continue
this process. Eventually no such arcs can be found;
then the number �i represents the length of a shortest
chain from S to Pi, for all i. In particular, the small-
est �i, for Pi ∈ T , is the length of a shortest chain
from S to T . Let �k be the smallest such. To find a
chain from S to T of length �k, look for an arc PjPk

such that �j + ljk =�k, then search for an arc PiPj such
that �i + lij =�j , and so on. Eventually a node of S is
reached, and the desired chain has been traced out (in
reverse).

If in the process of locating shortest chains from
commodity sources to sinks, for the various com-
modities, one is found of length less than one, we rec-
ommend that the corresponding column vector of A
be introduced into the basis immediately, rather than
repeating the shortest chain algorithm a number of
times in order to use the usual criterion for selection
of a vector to enter the basis.

We point out that the reason for getting rid of neg-
ative multipliers �r before using the shortest chain
algorithm is that the algorithm may not work if arcs
have negative lengths.

To start the simplex computation, one can of course
begin with the basic variables xn+1� � � � � xn+r , corre-
sponding to the zero flow.

4. Concluding Remarks
Except for hand computation of a few small prob-
lems, we have no computational experience with the
proposed method. Whether the method is practica-
ble for a problem involving, say, 50 nodes, 100 arcs,
and 20 commodity source-sink sets S1�T1� � � � � S20�T20,
is a question which can be settled only by experi-
mentation. It would certainly be more practicable in

this case than straight-forward application of the sim-
plex method to a node-arc formulation of the prob-
lem, since in the latter formulation there would be
roughly 1100 equations in 2100 variables, and hence
the basis matrices would be much too large, whereas
in the suggested method, the basis matrices would be
100 × 100, and at most 20 applications of the short-
est chain algorithm would be necessary on each sim-
plex iteration. How many simplex iterations might
be required is another matter, though. The incidence
matrix A for such a problem could have many thou-
sands of columns. On the other hand, there would
probably be many column vectors of A dominated by
others, in the sense that, for a given commodity (or for
different commodities in the equal value case), if one
chain C is a subset of another chain C ′, then C ′ can be
ignored. (For instance, the chain C1 of Figure 2 dom-
inates C8 and C9.) The shortest chain method takes
care of such dominances automatically.

A more serious consideration is how to handle the
case of limited supplies of commodities in such a
problem. For example, suppose that in the two com-
modity maximal flow problem corresponding to the
matrix of Figure 2, there is an amount a1 of commod-
ity 1 at P1, an amount a2 of commodity 1 at P2, and an
amount a4 of commodity 2 at P4. We can reduce this
to a problem of the same type as before by introduc-
ing three new directed arcs and nodes as follows: A′

1
from P ′

1 to P1 with capacity a1�A
′
2 from P ′

2 to P2 with
capacity a2, and A′

4 from P ′
4 to P4 with capacity a4.

We then take P ′
1�P

′
2 as sources for commodity 1, and

P ′
4 as the source for commodity 2. However, in the

hypothesized large network with 20 commodities, the
number of such new arcs would be

∑20
i=1 ni, where ni

is the number of nodes in Si, and since each new arc
increases the size of basis matrices by one, this might
take the problem out of range of present computing
machines.
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