
Math. Prog. Comp.
DOI 10.1007/s12532-017-0120-7

FULL LENGTH PAPER

On the computational efficiency of subgradient
methods: a case study with Lagrangian bounds

Antonio Frangioni1 · Bernard Gendron2,3 ·
Enrico Gorgone4,5

Received: 1 November 2015 / Accepted: 20 April 2017
© Springer-Verlag Berlin Heidelberg and The Mathematical Programming Society 2017

Abstract Subgradient methods (SM) have long been the preferred way to solve
the large-scale Nondifferentiable Optimization problems arising from the solution
of Lagrangian Duals (LD) of Integer Programs (IP). Although other methods can have
better convergence rate in practice, SM have certain advantages that may make them
competitive under the right conditions. Furthermore, SMhave significantly progressed
in recent years, and new versions have been proposed with better theoretical and prac-
tical performances in some applications. We computationally evaluate a large class of
SM in order to assess if these improvements carry over to the IP setting. For this we
build a unified scheme that coversmany of the SMproposed in the literature, comprised
some often overlooked features like projection and dynamic generation of variables.

The software that was reviewed as part of this submission has been issued the Digital Object Identifier
doi:10.5281/zenodo.556738.

B Antonio Frangioni
frangio@di.unipi.it

Bernard Gendron
Bernard.Gendron@cirrelt.ca

Enrico Gorgone
egorgone@unica.it; enrico.gorgone@iimb.ernet.in

1 Dipartimento di Informatica, Università di Pisa, Pisa, Italy

2 Centre Interuniversitaire de Recherche sur les Réseaux d’Entreprise, la Logistique et le Transport
(CIRRELT), Montreal, Canada

3 Department of Computer Science and Operations Research, Université de Montréal, Montreal,
Canada

4 Dipartimento di Matematica ed Informatica, Università di Cagliari, Cagliari, Italy

5 Indian Institute of Management Bangalore (IIMB), Bengaluru, India

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s12532-017-0120-7&domain=pdf
http://dx.doi.org/10.5281/zenodo.556738

Antonio Frangioni et al.

We fine-tune the many algorithmic parameters of the resulting large class of SM, and
we test them on two different LDs of the Fixed-Charge Multicommodity Capacitated
Network Design problem, in order to assess the impact of the characteristics of the
problem on the optimal algorithmic choices. Our results show that, if extensive tuning
is performed, SM can be competitive with more sophisticated approaches when the
tolerance required for solution is not too tight, which is the case when solving LDs of
IPs.

Keywords Subgradient methods · Nondifferentiable Optimization · Computational
analysis · Lagrangian relaxation · Multicommodity Network Design

Mathematics Subject Classification 90C06 · 90C25

1 Introduction

The aim of this paper is to computationally evaluate a large family of approaches for
the solution of problems of the form

f∗ = min
{
f (λ) = ∑

k∈K f k(λ) : λ ∈ Λ
}

(1)

where K is a finite index set, Λ ⊆ R
n is closed, convex and “easy” in the sense that

projection upon Λ is inexpensive, and f k : Rn → R are proper convex functions.
The generalized gradient descent method, a.k.a. the Subgradient Method (SM), is the
extension of the gradient method for smooth optimization introduced in the 60s [61]
that solves (1) under very mild conditions. In particular, each of the functions f k need
only be known through a “black box” that, given λ ∈ Λ, returns the function value
f k(λ) and a subgradient gk ∈ ∂ f k(λ). Then, after computing f (λ) according to (1),
and similarly for

∑
k∈K gk = g ∈ ∂ f (λ), the algorithm employs the simple recurrence

formula
λ̃i+1 = λi − νi gi , λi+1 = PΛ(λ̃i+1), (2)

where P denotes the orthogonal projection onΛ. Only very simple rules are required to
the stepsize νi ∈ R+ to ensure that the sequence { fi = f (λi) } asymptotically solves
(1), i.e., lim inf i→∞ fi = f∞ = f∗. Undermild additional assumptions, cluster points
of { λi } also are optimal solutions to (1).

SM require Θ(1/ε2) iterations to solve (1) up to absolute error ε, which means
that they are not practical for attaining any more than a modest accuracy. Yet, that
is also the best possible worst-case complexity for the minimization of a generic
nondifferentiable function only known via a black box [51]. Besides, the complexity
is independent of the size n of the problem. Therefore, SM may be promising for
very-large-scale problems where a high accuracy is not necessary, whereas a short
running time is a primary concern. This happens to be often the case when f is the
Lagrangian function of a hard optimization problem, say a block-structured Integer
Program (IP)

max
{ ∑

k∈K ckuk : ∑
k∈K Akuk = b, uk ∈ Uk k ∈ K }

, (3)

123

On the computational efficiency of subgradient methods…

where one relaxes, in a Lagrangian fashion, the complicating constraints that link
together blocks of variables that would otherwise be independent, yielding

f (λ) = λb + ∑
k∈K

(
f k(λ) = max

{
(ck − λAk)uk : uk ∈ Uk

})
. (4)

Often the sets Uk are “hard”, say encompassing integrality restrictions, so that (3)
is a “hard” problem. Thus, (4) is less hard than (3) if only because it decomposes
into smaller independent subproblems. In some cases (4) is simpler even if |K| = 1
since U 1 has a specific structure that can be algorithmically exploited; sometimes,
as in Sect. 3.1, both effects apply. Therefore, to simplify the notation we will write
cu, Au = b and U respectively for the objective function, linking constraints and
feasible region in (3)/(4) when the sum-function structure is better ignored. We also
remark that there is a slight (and intended) inconsistency between (1) and (4), in that
the former actually has |K| + 1 functions counting the linear one λb; we will ignore
this detail (say, assume b = 0) up until it becomes relevant.

TheLagrangian relaxation (4) of the IP (3), although not the only application of SM,
has been one of the main factors motivating the interest in this class of algorithms.
After the seminal [36], the use of Lagrangian Duals (LD) [32] has been a staple
of integer optimization for over two decades, during which “Lagrangian relaxation”
has invariably been a synonym of “solving a LD by a SM.” In fact, some of the
improvements on the SM originate from the IP community, such as the deflection
techniques introduced in [14] to face the “zig-zagging” behaviour whereby gi+1 ≈
−gi , so that two “reasonably long” steps combined make an “unfeasibly short” one.
This leads to replace (2) with

λ̃i+1 = λi − νi di (5)

where the direction di is obtained by some linear combination of the current subgra-
dient gi and the previous direction di−1. In the constrained case, the fact that di is
chosen without regard of the feasible set Λ also independently causes the zig-zagging
phenomenon, unless conditional subgradient techniques [45] are employed whereby
di is first projected on the tangent cone of Λ at λi (it is somewhat surprising that the
combination of deflection and projection has not been analyzed until [21]). Again, IP
has been the main motivation for their development: inequality constraints Au ≤ b
in (3) give Λ = R

n+. Also, stepsize rules have been developed specifically for integer
optimization [6,31].

The appeal of SM has started to decrease during the early 90s, for different reasons.
On one hand, the success of polyhedral techniques has meant that Branch&Cut (B&C)
approaches based on standard Linear Programming (LP) techniques have rapidly
became the method of choice for the solution of IPs. On the other hand, Cutting-
Plane (CP) methods for solving (1) had been known for almost as long as SM [40],
and variants have been developed over the years that have been proven to be supe-
rior to SM in many circumstances. In particular, both Bundle methods [37,47,64]
and center-based methods [22] (the latter often [33], but not always [57], based on
interior-point techniques) stabilize the original CP,most of the time resulting in the best
performances [10,13,19,30]. Yet, the computational advantage of these methods upon
SM is mostly seen “at the tail” of the process, where SM convergence remains slow

123

Antonio Frangioni et al.

whereas other methods can (if properly set) rapidly accrue “the right set of information
to stop” [29,30]. In earlier stages the behaviour is more similar, despite the fact that the
other methods hoard much more information than SM do [13]. This implies a higher
cost per iteration due to the solution of the Master Problem (MP), that can account
for a large part of the total computational time [27,29], thereby possibly negating the
advantage due to faster convergence. Although the cost of the MP can be decreased,
e.g. by developing specialized methods [24] or by reformulating it so that it can be
more effectively solved by standard ones [8], the SM is inherently less expensive. The
MP cost is particularly hurtful when solving the subproblems in parallel, since then
the MP is the sequential bottleneck that limits the parallel speedup [15].

Furthermore, research on SM continued to bring improvements. One was the re-
discovery [5,6,46] of what should have been a well-known property [2], i.e., that SM
can be endowedwithways to produce (approximately) optimal solutions to the convex-
ified relaxation [48]. This puts themon parwith Bundle and center-basedmethods, that
have always been well-known for being able to produce primal solutions [23,26] as a
by-product of dual optimization.Also, incremental SMhave been proposed [41,50,56]
which allow to exploit the block-separable structure of (4) to potentially speed-up
computations, something that—albeit with a very different set of trade-offs—Bundle
methods were already well-known to be able to do [4,10,22,29,39]. Finally, fast SM
have been proposed, starting with [52,53], which try to exploit structure in f to close
the gap with fast gradient methods [51], that have substantially better convergence
rates than SM but require differentiability of f . Applied to our setting these would
require to solve the modified Lagrangian problem as

f̄μ(λ) = λb + max{ (c − λA)u − μd(u) : u ∈ U }, (6)

with an appropriately defined strongly convexprox-function d(u) so that f̄μ is a smooth
lower approximation of f , and the two minima can be related by a simple function of
μ. Thus, one can apply a fast gradient to f̄μ and, appropriately managingμ, efficiently
obtain an approximate solution to (1). This approach has been quite successful in sev-
eral applications that require the solution of large-scale convex optimization problems
[49], such as machine learning, data mining, inverse problems, and imaging (e.g.,
[1,17]). In turn, this has stimulated a vibrant research stream that is producing new
results [7,11,44]. While the modification (6) is typically not viable in IP applications,
primal–dual SM (PDSM) [54] can be defined that try to achieve similar results with
an oracle for the original function. Indeed, the recent universal fast gradient method
[55] automatically switches from the fast gradient, when f has the required proper-
ties, to PDSM when these are missing; for this reason, in this paper we take PDSM
as the representatives of “modern” SM. Even the very recent [38], which combines
in a unified framework PDSM with the Mirror-Descent method [51], provides only
a slight generalization that does not significantly enlarge the class of approaches that
can be implemented.

The aim of this paper is to assess how the recent developments in SM have influ-
enced their computational significance for the approximate solution of LD of IPs. Our
interest is motivated by the fact that, when used to provide lower bounds on (3), (1) has
to be solved with the same accuracy required to the solution of (3), which is usually

123

On the computational efficiency of subgradient methods…

Table 1 Theoretical
convergence proofs of the
employed SM

DR SR PR AS IN References

Primal–Dual No No No [55]

STSubgrad Polyak No No No [58]

STSubgrad FumeroTV No No No [31]

STSubgrad Any Yes No No [21]

STSubgrad Any No No Yes [9]

Volume ColorTV No No No [6]

Volume Any Yes No No [21]

around 1e-4 relative. This value is, broadly speaking, not so coarse that a SM is
clearly the best choice to attain it (as would, say, be 1e-2), but as well not so fine as
to be basically hopeless to attain with a SM (as would, say, be 1e-6). This middle
ground needs therefore to be explored computationally. Towards that aim we unify
most of the known SM under a general scheme, starting from [21] that first unified
deflection and projection and adding a number of other practically relevant issues such
as several different forms of deflection and stepsize formulæ, incremental approaches,
and dynamic generation of Lagrangian variables. The aim is not providing theoretical
contributions: some of the variants that we have tested do not even have a rigorous
convergence proof (cf. Table 1). We have instead developed an object-oriented C++
code, that has been released under an open-source license, that implements the pro-
posed general scheme in a flexible way so as to make it easy to add new variants. The
code is tested on the solution of two different LD of the Fixed-Charge Multicommod-
ity Capacitated Network Design (FC-MCND) problem [18]. While both relaxations
exhibit the block-separable form (4), they differ—for the same FC-MCND instance—
in |K|, n, and whether or not Λ = R

n . These characteristics have an impact on the
optimal choice of the algorithmic parameters for SM, helping in better characteriz-
ing the strengths and weaknesses of each variant. However, the two LD ultimately
compute the same bound, which allows for an interesting comparison between them
as well as with other solution methods that attain the same bound, such as different
algorithms to solve the same LD and the use of general-purpose LP solvers.

The paper is organized as follows. In Sect. 2 we discuss the main characteristics of
the SM presented in the literature, and we discuss a unified algorithmic scheme that
encompasses them. Section 3 is dedicated to our extensive numerical experiments:
we describe the target FC-MCND problem and its two different Lagrangian relax-
ations, then the experimental setup, and finally the results of the best SM variants,
briefly comparing them with other approaches. These results, and the learned lessons,
are summarized in Sect. 4. The “Appendix” contains the details of the algorithmic
parameters of the SM we have used and of the tuning we have performed on them.

2 A general subgradient scheme

In this section we discuss the basic building blocks of SM, and we describe a general
scheme encompassing many of the variants proposed in the literature.

123

Antonio Frangioni et al.

2.1 Building blocks of subgradient methods

Each SM is constructed by combining a set of basic “building blocks”. We now briefly
discuss them, with the fine details provided in the “Appendix”.

2.1.1 Stepsize rules

A crucial aspect of any SM is the selection of the stepsize νi . One of the surpris-
ing properties of these algorithms is that the stepsize can be in fact chosen without
any knowledge, either a-priori or a-posteriori, of the specific function to be mini-
mized; indeed, any choice of the stepsize satisfying the so-called diminishing/square
summable condition

∑∞
i=1 νi = ∞,

∑∞
i=1 ν2i < ∞,

of which νi = 1/ i is the prototypical example, leads to a convergent algorithm.
While this emphasizes the robustness of SM, these Stepsize Rules (SR) are most often
inefficient in practice. The first efficient SR is due to Polyak [58], and simply reads
νi = βi (fi − f∗)/‖gi‖2, with βi ∈ (0, 2) arbitrary. This, however, needs to be revised,
because in general di
= gi (cf. Sect. 2.1.2), and f∗ is not known. This leads to the
Polyak-type target value SR of the form

νi = βi (fi − f levi)/‖di‖2 (7)

where f levi is some approximation of f∗. Several SR of this type have been proposed;
see, e.g., [5,6,12,20,43,60]. Except in specific cases that will be discussed separately,
all of our SR will have this form. The nontrivial issue in (7) is, clearly, how f levi
is determined. Without any external information, the typical approach is the target
following one, where f levi = f reci − δi using the record value f reci = min{ fl :
l = 1, . . . , i } and the displacement δi > 0 (which guarantees νi ≥ 0). The rules for
choosing δi are divided into vanishing and nonvanishing ones according to the fact
that δi ↘ 0 as i → ∞, or not [21,42,59]. However, our application has the specific
benefit that often a lower bound on f∗ is available. This is typically provided by the
cost cū of some feasible solution of (3). In theory ū may not always be available, for
instance because (3) is actually empty. However, in many cases feasible lower bounds
can easily be computed early on. For the application of Sect. 3.1, for instance, it is
easy to detect if a solution exists at all by simply solving a continuous relaxation; if
not there is no point in solving (1), otherwise rounding provides a feasible solution ū
which can be used as a feasible lower bound to all nodes of a B&C approach. Indeed,
at each node the algorithm is stopped as soon as f reci ≤ cū(1 + η), where η is the
required relative accuracy for the solution of (3). Hence, in our tests we will assume
that a lower bound f ≤ f∗ is available, which provides a workable f levi without a
need for target following techniques to be used. This allowed us to reduce the set of
SR to be tested to only the following three:

1. the Polyak rule [58], whereby βi and f levi do not depend on i ;

123

On the computational efficiency of subgradient methods…

2. the ColorTV rule as implemented in the Volume algorithm [5], which is based on
classifying the iterations as green, yellow and red according to the improvement
Δ fi = fi−1 − fi and the scalar product di−1gi (cf. the Appendix);

3. the FumeroTV rule introduced in [31], specifically designed for LDs of IPs and
that changes both βi and f levi in two different phases (cf. the Appendix).

It would, however, be straightforward to test other approaches in our C++ framework,
such as the standard target following ones [21,42,59]. In fact, other than the above
three Polyak-type rules, we have also tested the entirely different SR corresponding
to PDSM, as discussed next.

2.1.2 Deflection

We have always used the fairly (although not entirely) general version

di = αi gi + (1 − αi)di−1 (8)

of theDeflectionRule (DR) (5) to compute the next iterate, for the deflection parameter
αi ∈ [0, 1]. The use of a convex combination is crucial in the analysis, because it
ensures that di is always an approximate (conditional, cf. Sect. 2.1.3) subgradient of f ,
as recalled in Sect. 2.2. Furthermore, this allows to produce (hopefully, asymptotically
feasible) primal solutions u ∈ conv(U) that are useful, e.g., for the active-set strategy
discussed in Sect. 2.1.5. Finally, since di is ultimately to be scaled by the stepsize νi ,
the multipliers can always be scaled (up or down) as to sum to one, with the scaling
factor then accounted by νi . For our experiments we have considered the following
three DR:

1. the STSubgrad rule of the non-deflected SM [58], i.e., αi = 1;
2. the Volume rule where αi is chosen as the (safeguarded) optimal solution of the

one-dimensional quadratic problem [5,6] (cf. the Appendix);
3. the Primal–Dual rule of [54] for PDSM, which actually choses αi and νi simul-

taneously in order to obtain optimal worst-case estimates on the SM convergence
rate, in both the Simple Averages (SA) and the Weighted Averages (WA) variants
(cf. the Appendix).

Other rules have been proposed, such as the original one in [14] which used the largest
possible αi yielding di−1gi ≥ 0 (i.e., αi = 1 if the property already holds). Again,
testing then in our C++ framework would be straightforward.

2.1.3 Projection

In the constrained case, what is actually minimized is the essential objective fΛ(λ) =
f (λ)+ ı(λ), where ı(·) is the (convex) indicator function of Λ (i.e., ı(λ) = 0 if λ ∈ Λ,
and ı(λ) = ∞ otherwise). It is well-known that the normal cone Ni to Λ at λi , which
is the polar of Ti , is ∂ı(λi). Projecting gi on Ti is then choosing some wi ∈ ∂ı(λi)
in order to use gi + wi ∈ ∂ fΛ(λi), instead of just gi , to define di . While this is quite
natural, at least ifΛ is easy to project upon, things aremore complex under (8), as there

123

Antonio Frangioni et al.

are then 8 possible deflection schemes, corresponding to all possible combinations to
projecting gi−1, di−1 and di . The analysis of [21] shows that theoretical convergence
can be attained in two ways. The first is the stepsize-restricted one, limited to stepsize
rules of the form (7), which requires the satisfaction of the safe rule

βi ≤ αi (≤ 1), (9)

ensuring that a step over a direction that is very far from −gi cannot be too large. In
the deflection-restricted one, νi can rather be choosen arbitrarily provided that αi is
kept “large enough” by

(
νi‖di−1‖2

) (
fi − f levi + νi‖di−1‖2

)
≤ αi . (10)

If projection on Λ is too expensive, it could be substituted with partial projections
working onto the individual constraints sets [16]. This would not change much the
algorithmic scheme presented in this paper; besides, “complex” Λ are comparatively
rare in our preferred application.

2.1.4 Incremental approaches

When |K| is very large, the total cost for computing f (λi) may be large even if each
f k is, taken individually, quite inexpensive. Motivated by training approaches for
machine learning, incremental SM have been developed where the “full” subgradient
gi is replaced by gki of one component k ∈ K. Ideally, a sequence of incremental
(inner) iterations performed along single-component subgradients could be roughly
as effective as a sequence of full (outer) iterations, while the function evaluation cost
is reduced by a factor of 1/|K| [9,56]. However, to guarantee convergence one needs
to regularly compute the whole function f , so not all the iterates can be incremental.
Besides, due to the risk that a step along one “rogue” component may move λi away
from the optimum, the stepsize of incremental iterations need to be reduced with
respect to that of full ones (cf. (14) below).

2.1.5 Active set

When the number n of variables (i.e., of Au = b constraints in (3)) is large, it may
be convenient to employ an Active Set (AS) strategy whereby only a (small) subset
of them is given a nonzero value at each iteration [26,29,30]. This is in particular
sensible if the constraints have the form Au ≤ b (⇒ Λ = R

n+), because one can
expect that only a fraction of them will actually be binding at optimality. Indeed, the
AS allows to deal even with exponentially many constraints, provided that an efficient
separator is available, which is known as “Relax-and-Cut” [35]. The relevant technical
issue is what solution u ∈ U is used to perform separation, i.e., to identify violated
constraints to be added to the AS. An obvious choice is the optimal solution ui of (4)
for the current iterate λi , but a more sound choice is the convexified solution ūi that can
be generated at each iteration [2,5,6,34,46] and that, under appropriate conditions,

123

On the computational efficiency of subgradient methods…

converges to the optimal solution of (3) (if it is a convex problem, of its convexified
relaxation otherwise). Under (8), this is simply obtained as ūi = αi ui + (1−αi)ūi−1.
TheAS technique poses little convergence issues if theAS ismonotonically increasing
(eventually, all variables will be active); careful removal of variables from the AS is
also possible.

2.1.6 Summary

All these aspects give rise to a rather large set of possible combinations, many of
which have algorithmic parameters that have to be tuned for optimal performances.
Not all of these combinations have reliable proofs of convergence, although several do
(cf. Table 1). In practice, barring dramatic mis-settings of the algorithmic parameters,
all the ones we have tested showed at least some degree of convergence, confirming the
well-known fact that SM are remarkably robust approaches. Despite being very many
(cf. the “Appendix”), the combinations that we have tested do not cover all possible
variants of SM. Among the techniques that have been left out of the experiments are
space-dilation methods [41, § 7.2], other SR like variants of the Polyak stepsize [41,
(7.11)] or Ermoliev-like stepsizes [41, (7.6)–(7.9)], the heavy ball SM [62] popular in
machine learning, and others. Yet, the structure of our C++ code would allow to easily
incorporate most of these variants.

2.2 A generic subgradient scheme

We now present a generic scheme of SM, in order to be able to discuss the nontrivial
interactions between its individual components.

0. Input the algorithmic parameters, among which StepRes;
Select λ̄0 ∈ ; λ1 ← λ̄0, f̄0 = −∞, d0 ← 0, i ← 0 and go to step 4;

1. Possibly, di−1 ← PTi (di−1);
if(StepRes) then αi = Deflection(); ComputeD(); νi = Stepsize(αi);

else νi = Stepsize(); αi = Deflection(νi); ComputeD();
2. If some stopping test is satisfied, exit;
3. λi+1 ← P(λ̄i − νi di);
4. OutItr = true if an outer (full) iteration is to be performed;

if(OutItr) then evaluate fi+1 = f (λi+1) and gi+1 ∈ ∂ f (λi+1);
else select k, evaluate f k(λi+1) and gi+1 ∈ ∂ f k(λi+1);

5. Possibly, gi+1 ← PTi (gi+1). Select λ̄i+1, set f̄i+1 accordingly;
6 i ← i + 1 and go to step 1.

The following general remarks discuss the common features of all the variants.

– The new iterate is generated at Step 3 starting from the stability center λ̄i , which
is updated at Step 5. In the original SM the update is always λ̄i+1 = λi+1. In the
parlance of Bundle methods, this is called a Serious Step (SS), as opposed to Null
Steps (NS) where λ̄i+1 = λ̄i . Changing λ̄i is sensible if this leads to a significant
improvement of the function value, i.e., Δ fi = f̄i − fi+1 � 0, otherwise a NS

123

Antonio Frangioni et al.

may be preferable. This is the strategy often used (cf.“Parameters of the DR”
section of Appendix), although PDSM provide an entirely different rationale for
using a stability center, without ever changing it. In our implementation either a
SS or NS is always performed, as all SM variants we are aware of only employ
these (whereas Bundle methods exist that can make different choices [3]). All this
requires some quite obvious changes in some of the standard formulæ, such as
using f̄i instead of fi in (7) and (10).

– The ComputeD() subroutine extends (8) to di = αi ḡi + (1− αi)d̄i−1, where ḡi
and d̄i−1 are either gi and di−1 or their projection over the tangent cone Ti of Λ at
the stability center λ̄i . Furthermore, possibly di ← PTi (di), yielding all 8 possible
deflection schemes. Yet, since Ti is convex, if both gi and di−1 are projected then
di ∈ Ti already, thus projecting is avoided.

– The (fixed) algorithmic parameter StepRes controls whether νi is computed
after di (stepsize-restricted) or vice-versa (deflection-restricted). Since computing
di requires αi , ComputeD() always comes after Deflection(). However, in
the deflection-restricted approach, the safe rule (9) requires νi in order to choose
αi , and consequently Stepsize() has also to be called before ComputeD().
Note that, in this case, (7) would require ‖di‖ before having computed di , which is
then replaced by ‖di−1‖. The stepsize-restricted case is more natural for (7) in that
di is computed before νi is. In PDSM, νi and αi are chosen simultaneously, and
thereforeStepReshas no effect. Sincewedonot restrict ourselves to theoretically
convergent methods, we also allow to switch off the safe rules (9)/(10).

– To update the AS (if any), the primal solution ūi (cf. Sect. 2.1.5) is needed,
which depends on the choice of αi . Hence, the AS can only be updated after
that Deflection() has been called. However, if the AS changes, then the vec-
tors di−1 and gi need to be updated to take into account the new components,
which in turn may change αi . Hence, after an AS update, we compute again the
deflection parameter αi , and in the deflection-restricted scheme also the stepsize;
the process is repeated until the AS remains unchanged. Also, projection on Ti
should be re-done each time new variables are added. However, with Λ = R

n+ the
projection can be computed component-wise, hence only the new components of
di−1, gi and/or di need be dealt with.

– The linearization error of gi at λ̄i is

σi = σi (λ̄i) = f̄i −[fi + (λ̄i −λi)gi] = σi (λ̄i−1)−Δ f̄i − (λ̄i − λ̄i−1)gi , (11)

where Δ f̄i = f̄i−1 − f̄i . Note that Δ f̄i
= Δ fi when a NS occurred at iteration
i − 1, i.e., λ̄i = λ̄i−1 ⇒ Δ f̄i = 0. Convexity of f ensures that σi ≥ 0 and
gi ∈ ∂σi f (λ̄i). Furthermore, σi can be easily kept updated when λ̄i changes using
(11), which is useful since it may play a role at different points in the algorithm,
such as some of the DR (cf.“Parameters of the DR” section of Appendix) and the
stopping tests (cf. next point). However, when projection is used, one rather wants
to compute the linearization error of the projected ḡi ∈ ∂[f + ı](λ̄i). This is why
the projection of gi is not performed at Step 1, but it occurs before updating λ̄i
at Step 5: so that, in case of a SS, the linearization error of ḡi is computed. A
downside of this choice is that if λ̄i changes at Step 5, then gi may have to be

123

On the computational efficiency of subgradient methods…

projected again in the next iteration; however, projections (if at all required) are
inexpensive in our applications.

– An advantage of (8), which underlines all the analysis in [21], is that we can
similarly compute and keep updated the linearization error of di w.r.t. λ̄i . That
is, knowing that di−1 ∈ ∂εi−1 f (λ̄i), one has di ∈ ∂εi f (λ̄i) with εi = εi (λ̄i) =
αiσi (λ̄i) + (1 − αi)εi−1(λ̄i). Also, εi can be cheaply updated after a SS with
εi (λ̄i+1) = εi (λ̄i) − Δ f̄i+1 − (λ̄i+1 − λ̄i)di . This means, however, that the same
issue about projection arises here also.

– In the un-deflected SM, it is possible to use the inverse of ‖gi‖ in (7) because as
soon as ‖gi‖ = 0, one has proven the optimality of λi . Since gi ∈ ∂σi f (λ̄i), this
also means that λ̄i is σi -optimal. With the provisions above, the same holds for
di (or it projection); that is one can stop when both ‖di‖ and εi are “small”. Our
particular implementation is

t∗‖di‖ + εi ≤ ηmax(1, | f reci |) (12)

where t∗ is an appropriately chosen “large” scaling factor [25] and η is the required
final relative accuracy (typically, η = 1e-4).

– As suggested in [54] (and in [3] in a different context), one could also use the
deflection parameter αi in a different way: not to change the gradient, but the point
where it is evaluated. That is, for the recursive formulæ

λ̂i = αiλi + (1 − αi)λ̂i−1, f̂i = αi fi + (1 − αi) f̂i−1

with (λ̂0, f̂0) = (0, 0), one has f̂i ≥ f (λ̂i) for all i , and therefore an approximation
of the linearization error of di with respect to λ̂i is

ε̂i = ε̂i (λ̂i) = αi σ̂i (λ̂i) + (1 − αi)ε̂i−1(λ̂i)

(with ε̂1(λ̂1) = σ̂1(λ̂1) and σ̂i (λ̂i) = f̂i − [fi + (λ̂i − λi)gi] = (1− αi)[f̂i−1 −
fi − (λ̂i−1 − λi)gi]). Hence di ∈ ∂ε̂i f (λ̂i) for all i , which allows to also employ
the alternative stopping criterion

t∗‖di‖ + ε̂i ≤ ηmax(1, | f reci |). (13)

Testing (13) is free in PDSM, since all the terms involved have to be computed any-
way (cf. “Parameters of the DR” section of Appendix). For all the other approaches
we only used (12), for again in most cases ‖di‖ and εi are required anyway in the
SR and/or the DR. However, both stopping conditions are hardly if ever satisfied
in practice, and typically the algorithm stops at the pre-set iterations limit.

– At Step 4, some logic is used to decidewhether an outer (full) iteration is computed,
thereby evaluating all the components, or only one component is evaluated. This
is done in a simple pattern: we perform one outer iteration, followed by |K| + 1
inner iterations, one for each of the different components plus one for the linear
component corresponding to the RHS. As suggested in [9,56], we randomize the
order in which the components are chosen, with the random permutation changed

123

Antonio Frangioni et al.

at every outer iteration. We experimented with different ratios between inner and
outer iterations but the results were inconclusive, with the simple approach being
in general the best one. Furthermore, this means that a group of |K|+2 consecutive
iterations (one outer, the other inner) costs, at least as far as the subproblem solution
is concerned, as much as two full iterations. This is useful when comparing the
running time of the approaches, as discussed in Sect. 3.2. When the AS strategy
is used we update the AS only at full iterations, since its cost is comparable to
that of one full iteration (cf. again Sect. 3.2), and doing it more frequently would
largely negate the advantage of having faster iterations. Updating the active set
less frequently is possible, but it has not shown to be computationally convenient
in our application.

– In the incremental SG, deflection is never used (αi = 1); there is no theoretical
support for deflecting the inner steps, and also how to deflect outer ones is unclear.
For inner steps, (7) would require to compute the norm of gi ∈ ∂ f (λi), but only gki
for one k ∈ K is available. Following [50] we replace ‖gi‖ by the global Lipschitz
constant L of f , yielding

νi = βi
f̄ p(i) − f levi

χ |K|L2 (14)

where p(i) the last outer step before i and χ is an arbitrary constant. In other
words, one keeps the main part of the stepsize unchanged during sequences of
inner iterations between two outer ones. In the same vein in our experiments we
used βi = βp(i) and f levi = f levp(i).

3 Numerical experiments

We now present our extensive computational experiments on two different Lagrangian
relaxations ot the Fixed-Charge Multicommodity Capacitated Network Design (FC-
MCND) problem [18], rapidly recalled below.

3.1 Lagrangian relaxations for FC-MCND

Given a directed network G = (N , A), we must satisfy the demands of a set of
commodities K . Each k ∈ K is an origin-destination pair (sk, tk) with an associated
demand dk > 0 that must flow between them, i.e., a deficit vector bk = [bki]i∈N such
that bki = −dk if i = sk , bki = dk if i = tk , and bki = 0 otherwise. Each arc (i, j) ∈ A
canonlybeused, up to itsmutual capacityui j > 0, if the correspondingfixed cost fi j >

0 is paid. Also, individual capacities uki j are imposed for each commodity k. Finally,

the routing cost cki j has to be paid for each unit of commodity k on (i, j). FC-MCND
consists in minimizing the sum of all costs while satisfying demand requirements and
capacity constraints, its classical arc-flow formulation being

min
∑

k∈K
∑

(i, j)∈A c
k
i j x

k
i j + ∑

(i, j)∈A fi j yi j (15)
∑

(j,i)∈A xkji − ∑
(i, j)∈A xki j = bki i ∈ N , k ∈ K (16)

∑
k∈K xki j ≤ ui j yi j (i, j) ∈ A (17)

123

On the computational efficiency of subgradient methods…

xki j ≤ uki j yi j (i, j) ∈ A , k ∈ K (18)

xki j ≥ 0 (i, j) ∈ A , k ∈ K (19)

yi j ∈ {0, 1} (i, j) ∈ A (20)

For our tests we have employed two Lagrangian relaxations of FC-MCND.
In the first one relaxes constraints (17)–(18) with multipliers λ = [α, β] =
[αi j , β

k
i j](i, j)∈A , k∈K ≥ 0, yielding the objective function

min
∑

(i, j)∈A

∑

k∈K

(
cki j + αi j + βk

i j

)
xki j +

∑

(i, j)∈A

(
fi j − αi j ui j −

∑

k∈K
uki jβ

k
i j

)
yi j

whose minimization subject to the remaining (16), (19)–(20) reduces to |K | short-
est path problems, plus |A| trivial single-variable IPs. This justifies the name “Flow
Relaxation” (FR), althoughwhat is relaxed are rather knapsack-type constraints. Since
(16), (19) only involve continuous variables, the LD provides the same bound as the
continuous relaxation. Note that the constraints (18) are many; these being inequali-
ties, this is the setting where AS techniques can be expected to be effective [29]. An
estimate of the Lipschitz constant, useful for the incremental SM (cf. (14)) as well

as for PDSM (cf. (25)), is L =
√∑

(i j)∈A(ui j)2 + ∑
k∈K

∑
(i j)∈A(uki j)

2. Note that

when the AS is used the capacities entering the above formula are only those of the
constraints in the AS, and therefore L changes as the algorithm proceeds.

In the second relaxation one rather dualizes the flow conservation constraints (16)
with multipliers λ = [λki]i∈N ,k∈K , yielding the objective function

min
∑

(i, j)∈A

(∑
k∈K (cki j + λki − λkj)x

k
i j + fi j yi j

) [+ ∑
i∈N

∑
k∈K λki b

k
i

]

whose minimization subject to the remaining (17)–(20) basically decomposes into
|A| continuous knapsack problems, one to determine the optimal value of each inte-
ger variable yi j . This justifies the name Knapsack Relaxation (KR), although what
is relaxed are flow conservation constraints. It can be shown that, due to (18), the
relaxation has the integrality property: hence, as in the previous case the LD gives
the same bound as the continuous relaxation. The number of multipliers is still rather
large; however, these being equalities, it is unlikely that many of them are not going
to be active at optimality, and therefore the AS technique is less likely to be effec-
tive. Unlike in the FR, there are no sign constraints on the multipliers, and therefore

no projection is needed. The Lipschitz constant is L =
√∑

k∈K
∑

i∈N (Lk
i)

2, where

Lk
i = max[| − bki + ∑

(j i)∈A u
k
ji |, | − bki − ∑

(i j)∈A u
k
i j |].

Note that, being (15)–(20) a minimization problem (unlike (3)), both LD are max-
imization problems (unlike (1)). This is easily catered in the implementation by
changing the sign of the objective function and of the subgradients.

123

Antonio Frangioni et al.

3.2 Experimental setup

We have implemented all the variants of SM within a general C++ framework for
nonsmooth optimization developed by the authors along the years. The framework
is based on two pure virtual classes, NDOSolver and FiOracle, which establish
the interface between the optimization algorithm (in our case, the SM implemented in
the class NDOSolver::Subgradient) and the oracle computing f (in our case,
the classesFiOracle::FlowFiOrcl andFiOracle:KnapFiOrcl for FR and
KR, respectively). Other implementations of nonsmooth approaches, such as different
forms of Bundle methods [3,25,29], were already available within the framework.
The Subgradient class in turn relies on two external classes, Stepsize and
Deflection, so that the different SR (cf. Sect. 2.1.1) and DR (cf. Sect. 2.1.2) can
be implemented as derived classes from these. The PDSM case, where νi and αi are
set togethery, is easily accounted for by having the corresponding Primal–Dual
class to derive from both Stepsize and Deflection. This shows that while the
general scheme depicts the two aspects as independent, there is no problem when
they actually have to be synchronized. Moreover, the code is designed for dealing
with more complex Λ requiring projection on knapsack-like constraints by means of
the CQKnPClass class [28]. The code has been compiled with GNU g++ 4.4.5
(with -O3 optimization option) and ran single-threaded on an Opteron 6174 processor
(12 cores, 2.2 GHz) with with 32 GB of RAM, under a i686 GNU/Linux operating
system.To solve theFR,wehave used solvers from theMCFClassproject, available at
http://www.di.unipi.it/optimize/Software/MCF.html, while solving the KR basically
just required a sort andwas coded directly.When comparing SMwith other approaches
we used Cplex 12.5.0.1 to solve LPs.

The numerical experiments have been performed on 80 randomly generated
instances, arranged in 20 groups of 4 instances each. The first 8 groups are of small
size. In the remaining 12 groups the number of nodes and arcs are chosen as (20, 300),
(30, 600), or (50, 1200), and for each of these |K| is chosen in {100, 200, 400, 800}
(cf. Table 2). We refer to [29] for more details; the instances can be downloaded from
http://www.di.unipi.it/optimize/Data/MMCF.html.

A nontrivial issue about our experiments is how to compare the performances of the
different SM. Our choice has been to record the running time and the obtained lower
bound of each variant with different iteration count limits. For all non-incremental
SM, we (somewhat arbitrarily) choose that to be 100, 200, 500, 1000, 2000, 5000, and
10,000 iterations. For incremental SM, whose inner iterations are faster, the iteration
counts of 1000, 2000, 5000, 10,000, 20,000, 50,000, 100,000, 200,000, 500,000 and
1,000,000 were used instead. We then charted the time required to reach a certain gap
with the (known) optimal value. An issue with this approach is that computing the f
value in instances of larger size ismore costly,making it difficult to compute aggregated
results. Fortunately, for our instances a simple scaling was sufficient. Indeed, we
observed that the charts for the same SM variant and different sizes were remarkably
similar, and they became almost identical by expressing them in normalized running
time, i.e., dividing the running time by |A| · |K |. This is reasonable because in both
relaxations the computation of f is O(|A| · |K |) up to logarithmic factors (|K | shortest
paths with non-negative arc costs, hence O(|A| log(|N |)) each, versus |A| continuous

123

http://www.di.unipi.it/optimize/Software/MCF.html
http://www.di.unipi.it/optimize/Data/MMCF.html

On the computational efficiency of subgradient methods…

Table 2 Comparison of the best SM with Cplex and Bundle methods

Dimension Cplex FVP KVC DE-L AK-Q

|N | |A| |K | Time Time Gap Time Iter Gap Time Iter Time Iter

1 20 226 40 0.05 1.76 1e−3 0.12 881 9e−5 0.09 12 0.25 1233

2 20 230 200 17.71 11.07 2e−3 5.39 4738 1e−4 16.34 30 10.44 8084

3 20 292 40 0.05 2.17 1e−3 0.10 602 1e−4 0.09 10 0.12 480

4 20 292 200 16.42 14.12 1e−3 6.08 4604 1e−4 12.54 28 8.50 5225

5 30 519 100 9.48 16.53 2e−3 3.15 3709 2e−4 10.05 34 8.05 7073

6 30 519 400 191.30 87.07 1e−3 20.62 4631 1e−4 80.28 25 57.42 6713

7 30 684 100 7.04 24.85 2e−3 3.27 3141 1e−4 10.90 53 5.03 3499

8 30 692 400 450.36 125.89 1e−3 26.16 4903 2e−4 188.33 32 82.67 9830

9 20 300 100 5.73 10.21 3e−3 2.52 5000 2e−4 7.36 35 3.62 5181

10 20 300 200 26.62 24.29 1e−3 6.65 5000 2e−4 19.96 30 10.10 6083

11 20 300 400 42.95 46.54 1e−3 17.45 4051 1e−4 16.77 26 38.18 5920

12 20 300 800 148.35 107.66 1e−3 25.42 3538 1e−4 38.32 23 33.76 3232

13 30 600 100 18.68 23.78 1e−3 6.13 4708 2e−4 7.93 42 11.16 6496

14 30 600 200 50.89 44.94 9e−4 14.09 3368 1e−4 8.93 34 25.59 3896

15 30 600 400 104.10 101.11 8e−4 20.98 3208 1e−4 11.51 22 30.55 3345

16 30 600 800 732.87 199.27 9e−4 52.98 3093 1e−4 61.28 25 84.30 3761

17 50 1200 100 51.91 56.21 1e−3 10.74 3580 1e−4 3.69 48 33.20 8985

18 50 1200 200 224.47 101.93 1e−3 30.42 4666 1e−4 34.27 43 59.89 7536

19 50 1200 400 833.57 227.48 9e−4 79.22 4499 1e−4 52.60 34 154.41 7630

20 50 1200 800 3749.56 468.26 8e−4 180.41 4900 1e−4 76.22 25 168.72 4174

knapsack problems, hence O(|K | log(|K |)) each), and, given the limited range of
|A| and |K |, any logarithmic factor is almost constant. All the rest of the algorithm
has a linear cost in the number of variables n, which is (|A| + 1) · |K | for the FR
and |N | · |K | for the KR, but |A| is proportional to |N | as the graphs are sparse.
With the AS strategy n is actually (much) smaller, but identification of new violated
constraints is again O(|A| · |K |). All in all, the iteration cost is dominated by factors
of roughly O(|A| · |K |), explaining why the running time scales pretty much linearly
in that quantity. It is also remarkable that the convergence speed proved to be very
similar as n varied by orders of magnitude (from 9040 to 960,000 for the FR and
from 800 to 40,000 for the KR). This is not surprising, since the theoretical efficiency
estimates of SM are typically independent on n; our experiments confirm that the
practical behaviour is in fact pretty much invariant with n, hence that SM can be
especially promising for very large-scale problems. This allowed us to compare the
different SM variants by comparing their convergence graphs aggregated across all
the 80 instances of our test set. Note that incremental variants actually are randomized
algorithms due to the selection of the random reshuffle of the components at each full
iteration; however, since each graph aggregates results among many instances, it is
not necessary to repeat individual runs several times. All this has been instrumental

123

Antonio Frangioni et al.

in allowing us to perform the extensive tuning phase, detailed in “Parameters of the
DR” section of Appendix, which led to the identification of the best results described
in the next paragraph.

A final relevant aspect of our computational tests concerns the fact that the stepsize
rules (7)/(10) require some (lower) approximation f to f∗. In order to avoid target-
level approaches we have worked with a fixed f . However, in order to cater for the
different cases that would occur when using these techniques in IP, we have used two
different configurations: in one f = f∗, and in the other f = f∗ −0.1| f∗|. We denote
the latter by “10% f∗”; it corresponds to the case where the best known solution to (3)
is 10% more costly than the best possible lower bound (somewhat on the “bad” side,
but unfortunately not too unlikely), so that even if f∗ were reached, the corresponding
node in the B&C tree could not be fathomed. The case f = f∗ is instead the one
where the node can be fathomed by the bound, if the latter is computed accurately
enough.

3.3 Results for the FR

We now report the numerical results of SM on the FR, using the best parameters
detailed in the “Parameters of theDR” section ofAppendix. Each variant is represented
in Figs. 1 and 2 by means of a graph, with normalized total time (cf. Sect. 3.2) on
the horizontal axis and average gap on the vertical one, both in logarithmic scale. We
separately report results for all combinations of the three variants of SR and the two
variants of DR (STSubgrad “(s)” and Volume “(v)”). We also report all SR with
the incremental approach “(i)” (with no deflection, cf. Sect. 2.2), and the two SA and
WA variants of PDSM. For clarity, we divide both Figures in four different quadrants,
with the same scale on both axes to allow for comparison. The upper two graphs (part
(a)) depict results when the AS strategy is used, and the lower two ones (part (b)) when
it is not. The leftmost graphs depict the approaches when deflection is used (Volume
and Primal–Dual) and the rightmost ones these where it is not (STSubgrad
and incremental). Figure 1 reports the results with f = f∗, while Fig. 2 those with
f = 10% f∗; since PDSM do not use f , the corresponding curves are the same in the
two Figures. We did not report the performances of incremental approaches without
the AS strategy because it was exceedingly slow. This is not surprising, because in the
FR just forming the whole subgradient has a cost comparable to that of solving all the
subproblems, thereby negating any advantage in having incremental iterations.

The following remarks can be made about the results.

– Deflected approaches are much more efficient than non-deflected ones, as can be
seen by comparing the same SR (left vs. right graphs). This requires properly
choosing how to deflect and which vectors among di , di−1 and gi is better to
project. However, as discussed in “Detailed results of the tuning phase” section of
Appendix, the different forms of projection have a limited impact on the perfor-
mances, as long as any projection is performed, so deflection is most definitely the
way to go.

– Incremental approaches are not competitive, which is likely due to the combination
of two factors. On the one hand, they are not deflected (cf. above). On the other

123

On the computational efficiency of subgradient methods…

1e-03

1e-02

1e-01

5e-01

Polyak (v)

ColorTV (v)

FumeroTV (v)

PD - simple

PD - weighted

1e-03

1e-02

1e-01

5e-01

Polyak (s)

ColorTV (s)

FumeroTV (s)

Polyak (i)

ColorTV (i)

FumeroTV (i)

(a)

1e-03

1e-02

1e-01

5e-01

Polyak (v)

ColorTV (v)

FumeroTV (v)

PD - simple

PD - weighted

1e-03

1e-02

1e-01

5e-01

1e-06 1e-05 1e-04 1e-03 1e-06 1e-05 1e-04 1e-03

1e-06 1e-05 1e-04 1e-03 1e-06 1e-05 1e-04 1e-03

Polyak (s)

ColorTV (s)

FumeroTV (s)

(b)

Fig. 1 Results for the FR with lower bound f∗ (normalized time vs. average gap). a Results with the AS
strategy. b Results without the active-set strategy

hand n is large, so that just forming gki requires much more time than computing
f k . Thus, each iteration has a large “fixed cost”, independent on howmany compo-
nents are computed, besides that of computing f . While the AS strategy manages
to decrease this cost, it is still not enough to make the incremental approach com-
petitive. For this to happen n should be “small” w.r.t. the cost of computing each
f k , although if the latter is very large then other approaches may be preferable,
cf. Sect. 3.5.

– PDSM are most often not competitive, although their convergence is very stable.
The WA is typically better than the SA, as the theory suggests. PDSM can still
be considered attractive in view of the very limited effort required to tune them;
yet, finely tuned SM with other DR and SR can be significantly more effective.
This may be partly due to the fact that PDSM do not use any available information
about f ∗, while (7)/(10) do. We also experimented with providing PDSM other
information about the optimal solution to (1) (cf. “Parameters of the DR” section
of Appendix), but with no success.

– The AS technique is in general beneficial: SM are somewhat faster in performing
the same number of iterations (the topmost graphs in both Figures terminate more
on the left than the bottom ones), while the convergence rate is usually similar.
There are, however, exceptions. For instance, in “(v)” SM the AS can actually

123

Antonio Frangioni et al.

1e-03

1e-02

1e-01

5e-01

Polyak (v)

ColorTV (v)

FumeroTV (v)

PD - simple

PD - weighted

1e-03

1e-02

1e-01

5e-01

Polyak (s)

ColorTV (s)

FumeroTV (s)

Polyak (i)

ColorTV (i)

FumeroTV (i)

(a)

1e-03

1e-02

1e-01

5e-01

Polyak (v)

ColorTV (v)

FumeroTV (v)

PD - simple

PD - weighted

1e-03

1e-02

1e-01

5e-01

1e-06 1e-05 1e-04 1e-03 1e-06 1e-05 1e-04 1e-03

1e-06 1e-05 1e-04 1e-03 1e-06 1e-05 1e-04 1e-03

Polyak (s)

ColorTV (s)

FumeroTV (s)

(b)

Fig. 2 Results for the FR with lower bound 10% f∗ (normalized time vs. average gap). a Results with the
AS strategy. b Results without the AS strategy

improve convergence speed (especially in Fig. 2), while the converse happens
for PDSM. This is not surprising since, to the best of our knowledge, AS tech-
niques in the PSDM have never been analyzed; this may suggest that some specific
theoretical development may be useful in practice.

3.4 Results for the KR

The results of the KR are summarized in Fig. 3, with largely the same notation as for
the FR case. However, in this case the AS technique is not used, so only one figure is
needed: part (a) is for f = f∗, while part (b) is for f = 10% f∗. Since PDSM do not
use f , the corresponding curves are identical.

The following remarks can be made about the results:

– By and large, the same trends seen in the FR case show up here in terms of strong
benefits of deflection and no benefits of incremental approaches.

– PDSM are even less competitive. This may be due to the fact that they have
been developed under some sort of compactness assumption on Λ (cf. (21)), and
actually use its (estimated) diameter in setting the algorithmic parameters. In the
KR, not only the feasible set is unbounded (this was true for the FR as well); since

123

On the computational efficiency of subgradient methods…

1e-04

1e-03

1e-02

1e-01

9e-01

1e-041e-051e-06

Polyak (v)

ColorTV (v)

FumeroTV (v)

PD - simple

PD - weighted

1e-04

1e-03

1e-02

1e-01

9e-01

1e-041e-051e-06

Polyak (s)

ColorTV (s)

FumeroTV (s)

Polyak (i)

ColorV (i)

FumeroTV (i)

(a)

1e-04

1e-03

1e-02

1e-01

9e-01

1e-041e-051e-06

Polyak (v)

ColorTV (v)

FumeroTV (v)

PD - simple

PD - weighted

1e-04

1e-03

1e-02

1e-01

9e-01

1e-041e-051e-06

Polyak (s)

ColorTV (s)

FumeroTV (s)

Polyak (i)

FumeroTV (i)

FumeroTV (i)

(b)

Fig. 3 Results for the KR (normalized time vs. average gap). a Using lower bound f∗. b Using lower
bound 10% f∗

the relaxed constraints (16) are rank-deficient, the set of optimal solutions is also
unbounded. This seems to significantly affect the practical behaviour of PDSM.

– Figure 3a for f = f∗ shows a peculiar behaviour of the FumeroTV rule: while
it is the most efficient as it runs, it stops far before the maximal iteration limit
because νi become too small, thereby getting a far worse final gap than the other
variants (although quickly). This seems to be an issue with the rule, and no choice
of the parameters we tested was able to avoid it. Interestingly, this only happens
with deflection: it does not with STSubgrad, nor with f = 10% f∗. It may be
possible that some settings that we have not tested may avoid this behaviour, but
we elected to keep this as a cautionary tale about the fact that heuristic rules, while
possibly working well in many cases, may fail sometimes.

– The convergence graph of ColorTV is noticeably shorter than the others (save
for FumeroTV), as it often attains the required gap of 1e-4 against the known
lower bound f∗, at which point it is stopped. This can actually happen in the IP
application, since f∗ < cū may happen (the B&C node can be fathomed by the
bound), which is particularly useful because the standard stopping rules (12)/(13)
are scarcely effective.

– In general, the KR provides better bounds more quickly than the FR, confirming
previous experiences [19].

123

Antonio Frangioni et al.

3.5 Comparison with Cplex and Bundle methods

We now compare the best SMwith two other approaches which provide the very same
bound: solving the LP relaxation of (15)–(20) with a general-purpose LP solver, and
solving the LD of the FR and the KR with a Bundle method. The experiments were
performed as follows:
– For Cplex, an optimality gap of 1e-6 has been set, and always attained. Tuning
also has been performed by testing all of the available LP algorithms and selecteing
the dual simplex one, which provided the best performances; it was, however,
almost always the algorithm chosen by the “automatic” setting. Also, the (many)
constraints (18) have been introduced in the formulation as lazy constraints—the
equivalent of using the AS strategy in SM—which was crucial for performances
(cf. [29, Table 4]). We experimented with passing f∗ to Cplex; since a dual
simplex method is used, this might have allowed Cplex to stop as soon as a(n
approximately) dual solution is achieved. However, this turned out to be of no
use, precisely due to lazy constraints: Cplex separates them only when a feasible
primal solution is attained, which is only at the end of the dual simplex. Not using
the lazy constraints allowed Cplex to stop sooner when the information was
provided, but it resulted in a hugely increased running time. By contrast, the other
algorithms use infeasible primal solutions to do separation, and therefore do not
suffer from this issue.

– For the Bundle method [25] a gap of 1e-4 was required, although, unlike with
SM, requiring a higher accuracy may only come at the cost of a comparatively
minor increase in running times [29, Table 3 and Table 6]. The Bundle algorithm
was also provided with f∗, which it uses both to stop as soon as a solution with
accuracy 1e-4 is attained and to improve the cutting plane model it uses to drive
the search. We used two different variants of the Bundle method for the two LD.
For the FR we used the fully disaggregated version with “easy component” and
linear stabilization, denoted by DE-L in the table, that has been proven in [29]—
after extensive tuning—to be the best option. It requires a costly master problem,
which takes by far the largest fraction of running time, but it attains the desired
solution in a very small number of iterations. For the KR, after extensive tuning
(not discussed here in details) we found the best Bundle variant to rather be the one
that uses a fully aggregated master problem with quadratic stabilization (denoted
by AK-Q in the table), where the master problem is solved with the specialized
QP solver of [24].

– For SM, we report results corresponding to the best options identified in the previ-
ous phase. In particular, for the FR we have used Volume as DR and Polyak as
SR (denoted by FVP in the table), with the AS strategy, while for the KR we have
used Volume as DR, but ColorTV as the SR (denoted by KVC in the table). For
both algorithms, we have set f = f∗, and required a gap of 1e-4. We also set
an iteration limit of 5000, as it seemed to represent the best compromise between
accuracy of the achieved solution and running time. FVP invariably stopped at
the iteration limit, so we only report the final gap. KVC instead often—but not
always—reached 1e-4 accuracy before the iteration limit, thus we report both
the number of iterations and the final gap.

123

On the computational efficiency of subgradient methods…

The results are reported in Table 2, which shows some interesting trends. While
for small-scale instances direct use of an LP solver is the best option, decomposi-
tion approaches become more and more competitive as the size grows. Often the
Bundle method using “complex” master problems (DE-L) is the best option; the
approach also has the advantage that one can get very high-quality dual solutions,
and the corresponding accurate optimal primal solutions, with a comparatively minor
increase in effort [29].However, as the size increases, themaster problem cost becomes
very high; thus, methods that use cheaper master problems can be competitive even
if they require many more iterations. In particular, with only one exception (group
20), KVC is faster than AK-Q, while obtaining a roughly comparable gap; it is fair
to remark, however, that KVC did not always attain the required 1e-4 accuracy,
although it was always pretty close, whereas AK-Q always did. Yet, this confirms
previous experience [13] that aggregated Bundle methods do not always attain sig-
nificantly higher convergence rates than well-tuned SM, despite collecting far more
information and paying the corresponding price in terms of master problem time.
Interestingly, in several cases (groups 2, 4–8, 10 and 12), KVC obtains comparable
gaps than DE-L in less time, often significantly so. These results requiring accurate
selection of the many parameters, and partly hinge on the availability of (at least
approximate) bounds on the optimal value of the problem; hence, standard tech-
niques like the use of general-purpose solvers, or even more stable nondifferentiable
optimization approaches like Bundle methods, can be more appropriate if these con-
ditions are not met. However, our study confirms that appropriately tuned SM can
be competitive for efficiently computing (not too tight) bounds for hard, large-scale
IPs.

4 Conclusion

We have computationally analysed a large class of Subgradient Methods, covering
many of the ones proposed in the literature so far, for the solution of large-scale
Lagrangian Duals of hard Integer Programs. The specific features of this application
are that the number of variables is large, the computation of the function decomposes
into many independent problems, and only a relatively poor accuracy is required.
Our results show that, although the total number of variants (comprised the possible
settings for the numerical algorithmic parameters) is rather large, it is not exceedingly
difficult to find settings that work reasonably well across a large family of instances.
Provided that the appropriate tuning is made, SM perform roughly as expected: while
their global rate of convergence is far from being appealing, their very low cost per
iteration—in particular, outside of the function computation—can make up for it as
long as a relatively coarse bound is required.

Our interest in performing these experiments was partly about understanding the
computational significance of the theory developed in [21]. In this sense, we can report
that the ideas developed therein actually seem to have an impact: deflecting is indeed
crucial for good performances of a SM, and deflection and projection do work better
together (cf. Table 3). Interestingly, deflection-restricted approaches, developed for
proving theoretical convergence of SM, actually seem to work well in practice in some

123

Antonio Frangioni et al.

cases (cf. Table 4). What mostly motivated our interest, however, was the hope that
two relatively recent additions to the arsenal of SM, namely incremental and primal–
dual approaches, could significantly improve the performances with respect to more
“traditional” ones. Limited to the very specific instances and problems we have tested,
and against our expectations, this proved less successful. In hindsight, this might have
been expected for incremental methods: the size of the variables space is large, while
the subproblems are of very low complexity, whichmeans that the “fixed cost” for each
iteration (even if AS techniques are applied) largely makes partial computation of f
irrelevant. There very likely are IPs where these trade-offs are different, and therefore
incremental methods can be competitive, especially if theoretical developments—e.g.,
along the lines of [63]—would allow incorporating deflection techniques. As far as
PDSM are concerned, the results are promising in that they show a very consistent
behaviour with a much lower need of tuning parameters. Still, carefully tuned version
of traditional SM can significantly outperform them in most scenarios. Our results
seem to suggest that PDSM may be improved in practice by:

– exploiting information about the optimal value of the problem;
– adapting the approach to cope with an active-set strategy;
– adapting the theory to cope with cases where the feasible set, and even worse the
optimal set, is unbounded.

We hope that our analysis will stimulate further research along these lines.
A different line of research concerns the actual use of SM within enumerative

approaches for the IP. In such a framework, trading faster bound computation for lower
bound quality can indeed improve the overall efficiency of the approach, but only if the
right trade-offs are made. Furthermore, solution of the LD is required not once, but in
eachB&Cnode; hence, reoptimization techniques, whereby the information generated
at the parent node is exploited to improve the solution time at its descendants, become
crucial. Which SM are more efficient in this context, in terms of the global running
time of the enumerative algorithm rather than of any single bound computation, is an
open question that we intend to pursue in the future.

Acknowledgements The first author acknowledge the contribution of the Italian Ministry for Univer-
sity and Research under the PRIN 2012 Project 2012JXB3YF “Mixed-Integer Nonlinear Optimization:
Approaches and Applications”. The work of the second author has been supported by NSERC (Canada)
under Grant 184122-09. The work of the third author has been supported by the Post-Doctoral Fellowship
D.R. No 2718/201 (Regional Operative Program Calabria ESF 2007/2013) and the Interuniversity Attrac-
tion Poles Programme P7/36 “COMEX: combinatorial optimizationmetaheuristics & exact methods” of the
Belgian Science Policy Office. All the authors gratefully acknowledge the contribution of the anonymous
referees and of the editors of the journal to improving the initial version of the manuscript.

Appendix

We now describe all the details of the SM that we have tested, together with the
results of the tuning phase. We remark that for some parameters it is nontrivial even
to set a reasonable ranges for the values. Our approach has been to select the initial
range heuristically, and then test it: if the best value consistently ended up being at
one extreme, this was taken as indication that the interval should be enlarged accord-

123

On the computational efficiency of subgradient methods…

ingly. This hinges on the assumption that the behaviour of the algorithm is somewhat
“monotonic” in the parameters; while this is not necessarily true, for the vast major-
ity of parameters a “monotonic” behaviour has been verified experimentally, in that
we almost never found the case where different settings “far apart” provided better
performances than these “in the middle.”

General parameters of SM

The following parameters are common to all variants of SM we tested, basically
irrespective of the specific rules for choosing the stepsize and the deflection.

– We denote by pr ⊆ { gi , di−1, di } the subset of vectors that are projected on the
tangent cone Ti of Λ at λ̄i ; in all our tests, pr does not depend on the iteration.
As already remarked, pr = { gi , di−1, di } makes no sense as Ti is convex. Fur-
thermore, when no deflection is done di = gi and therefore only pr = { gi } and
pr = ∅ make sense.

– Regarding the order in which the stepsize and the deflection are chosen, we denote
bysg∈ { drs, dr0, srs, sr0 } the four possible schemes, where “dr” and “sr” refer to
the deflection-restricted and stepsize-restricted approach, respectively, while “s”
and “0” refer to using or not the safe rule ((9) and (10), respectively). Of course,
drs and dr0 only apply if deflection is performed.

– We denote by χ the parameter used to adjust the Lipschitz constant L in the
incremental case, cf. (14), for which we tested the values χ = 1e-v for v ∈
{0, . . . , 8}.

– For the AS, one crucial decision is how often separation is performed: doing it
less often avoids some computations, but at the risk of ignoring possibly relevant
information for too long. We performed separation after the fixed number s1 ∈
{0, 1} of iterations, i.e., either not using the AS at all or separating every iteration.
Initial tests showed that larger values of sl were not effective.

Parameters of the SR

We now examine in details the parameters of the three SR. Since all of them have the
form (7), we are looking at different ways for determining βi and f levi .
Polyak In this SR βi and f levi are kept fixed at all iterations. Here, we exploit
the fact that in our application we know have “target value” f and simply test

the two cases f lev ∈ { f∗, 10% f∗}. As for the other parameter, we tested β ∈
{ 0.01, 0.1, 1, 1.5, 1.99 }.
ColorTV This SR is based on the improvement Δ f = f̄i−1 − fi of f and the scalar
product di gi to estimate “how successful a step has been.” Note, however, that in
deflection-restricted schemes (i.e., drs and dr0) di is not available and we use di−1gi
instead. Iteration i is marked as green if di gi > ρ and Δ f ≥ ρ max{| f reci |, 1}, as
yellow if di gi < ρ and Δ f ≥ 0, and as red otherwise, where ρ > 0 is a tolerance.
Intuitively, green is a “good” step possibly indicating that a larger νi may have been
preferable, whereas red is a “bad” one suggesting that νi is too large. Given three

123

Antonio Frangioni et al.

parameters cg, cy and cr , and denoting by ng, ny and nr the number of consecutive
green, yellow and red iterations, respectively, βi is updated as:

1. if ng ≥ cg then set βi = min{ 2, 2βi−1 };
2. if ny ≥ cy then set βi = min{ 2, 1.1βi−1 };
3. if nr ≥ cr then then set βi = max{ 5e-4 , 0.67βi−1 };
4. if none of the above cases occur, then set βi = βi−1.

One important parameter is therefore the arbitrarily fixed value β0. Also, the SR
includes a simple target-following scheme whereby if fi ≤ 1.05 f levi then f levi =
fi − 0.05 f levi (note that this never happens for f lev = 10% f∗). For this SR we kept
ρ = 1e-6 fixed and we tested all combinations of β0 ∈ { 0.01, 0.1, 1, 1.5, 1.99 },
cg ∈ { 1, 10, 50 }, cy ∈ { 50, 100, 400 }, and cr ∈ { 10, 20, 50 }.
FumeroTV This SR has a complex management of f levi and βi , motivated by exper-
imental considerations [31], that is subdivided into two distinct phases. The switch
between the two is an iteration counter r , that is increased each time there is no
improvement in the function value. This counter is used to define the exponential func-
tion σ(r) = e−0.6933(r/r1)3.26 , where r1 is a parameter; note that σ(r1) ≈ 1/2, which is
how the two apparently weird numerical parameters have been selected. The function
σ , which is decreasing in r , is used in two ways. The first is to determine the maximum
number of non-improving steps, which is the smallest integer r2 such that σ∞ ≥ σ(r2),
where the threshold σ∞ > 0 is another parameter: given r1 and σ∞, r2 can be obtained
with a simple closed formula. The second is to construct at each iteration the value of
f levi as a convex combination of the known global lower bound f (which, not inciden-
tally, this algorithm specifically tailored for IP is the only one to explicitly use) and
the current record value as f levi = σ(r) f + (1− σ(r)) f reci . In the first phase, when r

varies, the threshold varies as well: as σ(r) decreases when r grows, f levi is kept closer
and closer to f reci as the algorithm proceeds. In the second phase (r ≥ r2), where r is
no longer updated, σ(r) = σ∞. The procedure for updating r and βi uses four algorith-
mic parameters: a tolerance δ > 0, two integer numbers η1 and η2 ≥ 1, and the initial
value β0 ∈ (0, 2). The procedure is divided in two phases, according to the fact that the
iteration counter r (initialized to 0) is smaller or larger than the threshold r2. Similarly
to ColorTV, the rule keeps a record value f̄i (similar, but not necessarily identical,
to f reci) and declares a “good” step whenever fi ≤ f̄i − δmax{| f̄i |, 1}, in which case
f̄ is updated to fi . In either phase, the number of consecutive “non-good” steps is
counted. In the first phase, after η̄2 such steps r is increased by one, and βi is updated as
βi = βi−1/(2βi−1+1). In the second phase r is no longer updated: after every “good”
step βi is doubled, whereas after η̄1 “non good” steps βi is halved. In the tuning phase
we tested the following values for the parameters: σ∞ ∈ { 1e-4, 1e-3, 1e-2 }, δ =
1e-6, r1 ∈ { 10, 50, 100, 150, 200, 250, 300, 350 }, β0 ∈ { 0.01, 0.1, 1, 1.5, 1.99 },
η1 ∈ { 10, 50, 100, 150, 200, 250, 300, 350 }, η2 ∈ { 10, 50, 100, 150, 200 }.
Parameters of the DR

We now describe in details the two “complex” DR that we have tested (STSubgrad,
where αi = 1 ⇒ di = gi and λ̄i+1 = λi+1 for all i , hardly needs any comment).
Note that the selection of λ̄i+1 is also done by the Deflection() object.

123

On the computational efficiency of subgradient methods…

Primal–Dual The PDSM is based on a sophisticated convergence analysis aimed
at obtaining optimal a-priori complexity estimates [54]. A basic assumption of PDSM
is that Λ is endowed with a prox-function d(λ), and that one solves the modified form
of (1)

min{ f (λ) : d(λ) ≤ D, λ ∈ Λ } (21)

restricted upon a compact subset of the feasible region, where D ≥ 0 is a parameter.
D is never directly used in the algorithm, except to optimally tune its parameters;
hence, (21) can always be considered if f has a minimum λ∗. In particular, we take
d(λ) = ‖λ − λ0‖2/2, in which case D = ‖λ∗ − λ0‖2/2. In general D is unknown;
however, the parameter “t∗” in the stopping formulæ (12)/(13) is somehow related.
Roughly speaking, t∗ estimates how far at most one can move along a subgradient
gi ∈ ∂ f (λi) when λi is an approximately optimal solution. The parameter, that it
used in the same way by Bundle methods, is independent from the specific solution
algorithm and has been individually tuned (which is simple enough, ex-post); hence,
D = (t∗)2L is a possible estimate. Yet, t∗ is supposed to measure ‖λ∗ − λi‖ for a
“good” λi , whereas D requires the initial λ0, which typically is not “good”: hence, we
introduced a further scaling factor F > 0, i.e., took γ = (F

√
L)/(t∗

√
2) for SA and

γ = F/(t∗
√
2L) for WA (cf. (25)), and we experimentally tuned F . In general one

would expect F > 1, and the results confirm this; however, to be on the safe side we
tested all the values F ∈ { 1e-4, 1e-3, 1e-2,1e-1, 1, 1e1, 1e2, 1e3, 1e4 }. As
suggested by one Referee we also tested using D = ‖λ∗ − λ0‖2/2, with λ∗ obtained
by some previous optimization. The results clearly showed that the “exact” estimate of
D not always translated in the best performances; in particular, for the FR the results
were always consistently worse, whereas for the KR the results were much worse for
WA, and completely comparable (but not any better) for SA. This is why in the end
we reported results with the tuned value of F .

For the rest, PDSM basically have no tunable parameters. It has to be remarked,
however, that PDSM are not, on the outset, based on a simple recurrence of the form
(5); rather, given two sequences of weights {υi } and {ωi }, the next iterate is obtained as

λi+1 = argmin
{
λ

∑i
k=1 υkgk + ωi d(λ) : λ ∈ Λ

}
. (22)

Yet, when Λ = R
n (22) readily reduces to (5), as the following Lemma shows.

Lemma 1 Assume Λ = R
n, select d(λ) = ‖λ − λ0‖2/2, fix λi = λ0 for all i ≥ 0 in

(5). By defining Δi = ∑i
k=1 υk , the following DR and SR

αi = υi/Δi (∈ [0, 1]) and νi = Δi/ωi (23)

are such that λi+1 produced by (22) is the same produced by (5) and (8).

Proof Under the assumptions, (22) is a strictly convex unconstrained quadratic prob-
lem, whose optimal solution is immediately available by the closed formula

λi+1 = λ0 − (1/ωi)
∑i

k=1 υkgk . (24)

123

Antonio Frangioni et al.

This clearly is (5) under the SR in (23) provided that one shows that the DR in (23)
produces

di =
(∑i

k=1 υkgk
)

/Δi .

This is indeed easy to show by induction. For i = 1 one immediately obtains d1 = g1.
For the inductive case, one just has to note that

1 − υi+1

Δi+1
= Δi+1 − υi+1

Δi+1
= Δi

Δi+1

to obtain

di+1 = αi+1gi+1+(1 − αi+1)di= υi+1

Δi+1
gi+1 + Δi

Δi+1

∑i
k=1 υkgk

Δi
= 1

Δi+1

i+1∑

k=1

υkgk .

��
Interestingly, the same happens if simple sign constraints λ ≥ 0 are present, which is
what we actually have whenever Λ
= R

n .

Lemma 2 If Λ = R
n+, the same conclusion as in Lemma 1 hold after PΛ(λi+1).

Proof It is easy to see that the optimal solution of (22) with Λ = R
n+ is equal to that

with Λ = R
n , i.e. (24), projected over Rn+. ��

Therefore, implementing the DR and the SR as in (23), and never updating λ̄i = λ0,
allow us to fit PDSM in our general scheme. To choose υi and ωi we follow the
suggestions in [54]: the SA approach corresponds to υi = 1, and the WA one to
υi = 1/‖gi‖. We then set ωi = γ ω̂i , where γ > 0 is a constant, and ω̂0 = ω̂1 = 1,
ω̂i = ω̂i−1 + 1/ω̂i−1 for i ≥ 2, which implies ω̂i+1 = ∑i

k=0 1/ω̂k . The analysis in
[54] suggests settings for γ that provide the best possible theoretical convergence, i.e.,

γ = L/
√
2D and γ = 1/

√
2D , (25)

for the SA and WA, respectively, L being the Lipschitz constant of f .
Volume In this DR, αi is obtained as the optimal solution of a univariate quadratic
problem. As suggested in [5], and somewhat differently from the original [6], we use
exactly the “poorman’s form” of the master problem of the proximal Bundle method

min
{

νi−1 ‖αgi + (1 − α)di−1‖2 /2 + ασi (λ̄i) + (1 − α)εi−1(λ̄i) : α ∈ [0, 1] }

(26)

where the linearization errors σi (λ̄i) and εi−1(λ̄i) have been discussed in details in
Sect. 2.2. Note that we use the stepsize νi−1 of the previous iteration as stability weight,

123

On the computational efficiency of subgradient methods…

since that term corresponds to the stepsize that one would do along the dual optimal
solution in a Bundle method [3,5,25]. It may be worth remarking that the dual of (26)

min
{
max{ gid − σi (λ̄i), di−1d − εi−1(λ̄i) } + ‖d‖2/(2νi−1)

}
, (27)

where d = λ− λ̄i , is closely tied to (22) in PDSM. The difference is that (27) uses two
(approximate) subgradients, gi anddi ,whereas in (22) oneuses only one (approximate)
subgradient obtained as weighted average of the ones generated at previous iterations.
Problem (26) is inexpensive, because without the constraint α ∈ [0, 1] it has the
closed-form solution

α∗
i = εi−1(λ̄i) − σi (λ̄i) − νi−1di−1(gi − di−1)

νi−1‖gi − di−1‖2 ,

and thus one can obtain its optimal solution by simply projecting α∗
i over [0, 1].

However, as suggested in [5,6] we rather chose αi in the more safeguarded way

αi =
∣∣∣∣∣∣

αi−1/10 if α∗
i ≤ 1e − 8

min{τi , 1.0} if α∗
i ≥ 1

α∗
i otherwise

where τi is initialized to τ0, and each τp iterations is decreased multiplying it by
τ f < 1, while ensuring that it remains larger than τmin. The choice of the stabil-
ity center is also dictated by a parameter m > 0 akin that used in Bundle methods: if
f̄i− fi+1 ≥ mmax{1, | f re fi |} a Serious Step occurs and λ̄i+1 = λi+1, otherwise aNull
Step takes place and λ̄i+1 = λ̄i . For the tuning phase we have searched all the com-
binations of the following values for the above parameters: τ0 ∈ { 0.01, 0.1, 1, 10 },
τp ∈ { 10, 50, 100, 200, 500 }, τ f ∈ { 0.1, 0.4, 0.8, 0.9, 0.99 }, τmin ∈ { 1e-4, 1e-5
}, m ∈ { 0.01, 0.1 }.

Detailed results of the tuning phase

The tuning phase required a substantial computational work, and a nontrivial anal-
ysis of the results. As discussed in Sect. 3.2, each SM configuration gave rise to
an aggregated convergence graph. To select the best configurations, the graphs were
visually inspected, and the ones corresponding to a better overall convergence rates
were selected. This usually was the configuration providing the best final gap for all
instances. Occasionally, other configurations gave better results than the chosen one
in the earlier stages of the algorithm on some subsets of the instances; usually the
advantage was marginal at best, and only on a fraction of the cases, while the disad-
vantage in terms of final result was pronounced. In general it has always been possible
to find “robust” settings that provided the best (or close so) gap at termination, but
were not too far from the best gaps even in all the other stages. Furthermore, although
the total number of possible combinations was rather large, it turned out that only a
relatively small set of parameters had a significant impact on the performances, and

123

Antonio Frangioni et al.

Table 3 Optimal parameters for the Flow Relaxation

in most of the cases their effect was almost orthogonal to each other. This allowed
us to effectively single out “robust” configurations for our test sets; for several of the
parameters, the “optimal” choice has been unique across all instances, which may
provide useful indications even for different problems.

For the sake of clarity and conciseness, in Tables 3 and 4, we report the chosen
values of the parameters for FR and KR, respectively, briefly remarking about the
effect of each parameter and their relationships. The behaviour of SM was pretty
similar in the two cases f = f∗ and f = 10% f∗; hence, the tables report the values
for f = f∗, indicating in “[]” these for f = 10% f∗ if they happen to be different.
The tables focus on the combinations between the three SR and the two DR, plus the
incremental case; the parameters of Primal–Dual variant are presented separately
since the SR is combined with the DR.

Results for the FR . The results for FR are summarized in Table 3, except for those
settings that are constantly optimal. In particular, STSubgrad and Incremental
have better performances with pr = {gi }, irrespective of the SR. For Volume, instead,
the optimal setting of pr does depend on the SR, although pr = {di } and pr = {di−1}
were hardly different. All the other parameters ofVolume depend on the SR (although
the stepsize-restricted scheme with no safe rule is often good), except τmin and m that
are always best set to 1e-4 and 0.1, respectively. Another interesting observation
is that, while Volume does have several parameters, it does seem that they operate
quite independently of each other, as changing one of them always has a similar effect
irrespective of the others. We also mention that for ColorTV the parameters cy and
cr have little impact on the performance, whereas cg plays an important role and it

123

On the computational efficiency of subgradient methods…

Table 4 Optimal parameters for the Knapsack Relaxation

significantly influences the quality of the results. As for FumeroTV, σ∞ and η2 have
hardly any impact, and we arbitrarily set them to 1e-4 and 50, respectively.
In PDSM, the only crucial value is F , used to compute the optimal value of γ in (25).
We found its best value to be 1e2 and 1e3 for SA and WA, respectively. The choice
has a large impact on performances, which significantly worsen for values far from
these.

Results for the KR . The best parameters for the KR are reported in Table 4. Although
the best values are in general different from the FR, confirming the (unfortunate) need
for problem-specific parameter tuning, similar observations as in that case can be
made. For instance, for Volume, the parameters were still more or less independent
from each other, and τmin and m were still hardly impacting, with the values 1e-4
and 0.1 still very adequate. For ColorTV, results are again quite stable varying cy.
Yet, differences can be noted: for instance, for FR cg is clearly the most significant
parameter and dictates most of the performance variations, while for the KR the
relationship between the twoparameters cr and cg and the results is less clear. Similarly,
for FumeroTV some settings are conserved: σ∞ and η2 have very little effect and
can be set to 1e-4 and 50, respectively. Other cases were different: for instance the
parameters η1, r1 and β0 were more independent on each other than in the FR.

The parameters ofPrimal–Dual showed to be quite independent from the under-
lying Lagrangian approach, with the best value of F still being 1e2 for SA and 1e3
for WA. This confirms the higher overall robustness of the approach.

We terminate the Appendix with a short table detailing which of the variants of
SM that we tested have a formal proof of convergence and where it can be found,
indicating the references wherein the proofs are given. The columns DR and SR, as
usual, indicatewhich ones among the possible defection and stepsize rules are adopted;

123

Antonio Frangioni et al.

an entry “any” means that the corresponding proof holds for all the rules. Moreover,
PR, AS and IN, respectively, stands for the strategies: (i) projection, (ii) active set and
(iii) incremental.

References

1. Ahookhosh, M.: Optimal subgradient algorithms with application to large-scale linear inverse prob-
lems. Tech. rep., Optimization Online (2014)

2. Anstreicher, K.,Wolsey, L.: Two “well-known” properties of subgradient optimization.Math. Program.
120(1), 213–220 (2009)

3. Astorino, A., Frangioni, A., Fuduli, A., Gorgone, E.: A nonmonotone proximal bundle method with
(potentially) continuous step decisions. SIAM J. Optim. 23(3), 1784–1809 (2013)

4. Bacaud, L., Lemaréchal, C., Renaud, A., Sagastizábal, C.: Bundle methods in stochastic optimal power
management: a disaggregated approach using preconditioners. Comput. Optim. Appl. 20, 227–244
(2001)

5. Bahiense, L., Maculan, N., Sagastizábal, C.: The volume algorithm revisited: relation with bundle
methods. Math. Program. 94(1), 41–70 (2002)

6. Barahona, F., Anbil, R.: The volume algorithm: producing primal solutions with a subgradient method.
Math. Program. 87(3), 385–399 (2000)

7. Beck, A., Teboulle, M.: Smoothing and first order methods: a unified framework. SIAM J. Optim.
22(2), 557–580 (2012)

8. Ben Amor, H., Desrosiers, J., Frangioni, A.: On the choice of explicit stabilizing terms in column
generation. Discrete Appl. Math. 157(6), 1167–1184 (2009)

9. Bertsekas, D., Nedić, A.: Incremental subgradient methods for nondifferentiable optimization. SIAM
J. Optim. 12(1), 109–138 (2001)

10. Borghetti, A., Frangioni, A., Lacalandra, F., Nucci, C.: Lagrangian heuristics based on disaggregated
bundle methods for hydrothermal unit commitment. IEEE Trans. Power Syst. 18(1), 313–323 (2003)

11. Bot, R., Hendrich, C.: A variable smoothing algorithm for solving convex optimization problems. TOP
23, 124–150 (2014)

12. Brännlund, U.: A generalised subgradient method with relaxation step. Math. Program. 71, 207–219
(1995)

13. Briant, O., Lemaréchal, C., Meurdesoif, P., Michel, S., Perrot, N., Vanderbeck, F.: Comparison of
bundle and classical column generation. Math. Program. 113(2), 299–344 (2008)

14. Camerini, P., Fratta, L.,Maffioli, F.: On improving relaxationmethods bymodified gradient techniques.
Math. Program. Study 3, 26–34 (1975)

15. Cappanera, P., Frangioni, A.: Symmetric and asymmetric parallelization of a cost-decomposition algo-
rithm for multi-commodity flow problems. INFORMS J. Comput. 15(4), 369–384 (2003)

16. Censor, Y., Davidi, R., Herman, G., Schulte, R., Tetruashvili, L.: Projected subgradient minimization
cersus superiorization. J. Optim. Theory Appl. 160(3), 730–747 (2014)

17. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to
imaging. J. Math. Imaging Vis. 40(1), 120–145 (2011)

18. Crainic, T.G., Frangioni, A., Gendron, B.: Multicommodity capacitated network design. In: Soriano,
P., Sanso, B. (eds.) Telecommunications network planning, pp. 1–19. Kluwer Academics Publisher
(1999)

19. Crainic, T., Frangioni, A., Gendron, B.: Bundle-based relaxation methods for multicommodity capac-
itated fixed charge network design problems. Discrete Appl. Math. 112, 73–99 (2001)

20. Crema, A., Loreto, M., Raydan, M.: Spectral projected subgradient with a momentum term for the
Lagrangean dual approach. Comput. Oper. Res. 34, 31743186 (2007)

21. d’Antonio, G., Frangioni, A.: Convergence analysis of deflected conditional approximate subgradient
methods. SIAM J. Optim. 20(1), 357–386 (2009)

22. du Merle, O., Goffin, J.L., Vial, J.P.: On improvements to the analytic center cutting plane method.
Comput. Optim. Appl. 11, 37–52 (1998)

23. Feltenmark, S., Kiwiel, K.: Dual applications of proximal bundle methods, including Lagrangian
relaxation of nonconvex problems. SIAM J. Optim. 10(3), 697–721 (2000)

123

On the computational efficiency of subgradient methods…

24. Frangioni, A.: Solving semidefinite quadratic problems within nonsmooth optimization algorithms.
Comput. Oper. Res. 21, 1099–1118 (1996)

25. Frangioni, A.: Generalized bundle methods. SIAM J. Optim. 13(1), 117–156 (2002)
26. Frangioni, A., Gallo, G.: A bundle type dual-ascent approach to linear multicommodity min cost flow

problems. INFORMS J. Comput. 11(4), 370–393 (1999)
27. Frangioni, A., Gendron, B.: A stabilized structured Dantzig–Wolfe decomposition method. Math.

Program. 140, 45–76 (2013)
28. Frangioni, A., Gorgone, E.: A library for continuous convex separable quadratic knapsack problems.

Eur. J. Oper. Res. 229(1), 37–40 (2013)
29. Frangioni, A., Gorgone, E.: Generalized bundle methods for sum-functions with “easy” components:

applications to multicommodity network design. Math. Program. 145(1), 133–161 (2014)
30. Frangioni, A., Lodi, A., Rinaldi, G.: New approaches for optimizing over the semimetric polytope.

Math. Program. 104(2–3), 375–388 (2005)
31. Fumero, F.: A modified subgradient algorithm for Lagrangean relaxation. Comput. Oper. Res. 28(1),

33–52 (2001)
32. Geoffrion, A.: Lagrangian relaxation and its uses in iteger programming. Math. Program. Study 2,

82–114 (1974)
33. Gondzio, J., González-Brevis, P., Munari, P.: New developments in the primal–dual column generation

technique. Eur. J. Oper. Res. 224(1), 41–51 (2013)
34. Görtz, S., Klose, A.: A simple but usually fast branch-and-bound algorithm for the capacitated facility

location problem. INFORMS J. Comput. 24(4), 597610 (2012)
35. Guignard, M.: Efficient cuts in Lagrangean ‘relax-and-cut’ schemes. Eur. J. Oper. Res. 105, 216–223

(1998)
36. Held, M., Karp, R.: The traveling salesman problem and minimum spanning trees. Oper. Res. 18,

1138–1162 (1970)
37. Hiriart-Urruty, J.B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms II–Advanced

Theory and Bundle Methods, Grundlehren Math. Wiss., vol. 306. Springer, New York (1993)
38. Ito, M., Fukuda, M.: A family of subgradient-based methods for convex optimization problems in a

unifying framework. Tech. rep., Optimization Online (2014)
39. Jones, K., Lustig, I., Farwolden, J., Powell, W.: Multicommodity network flows: the impact of formu-

lation on decomposition. Math. Program. 62, 95–117 (1993)
40. Kelley, J.: The cutting-plane method for solving convex programs. J. SIAM 8, 703–712 (1960)
41. Kiwiel,K.:Convergence of approximate and incremental subgradientmethods for convex optimization.

SIAM J. Optim. 14(3), 807–840 (2003)
42. Kiwiel, K., Goffin, J.: Convergence of a simple subgradient level method. Math. Program. 85(4),

207–211 (1999)
43. Kiwiel, K., Larsson, T., Lindberg, P.: The efficiency of ballstep subgradient level methods for convex

optimization. Math. Oper. Res. 23, 237–254 (1999)
44. Lan, G., Zhou, Y.: Approximation accuracy, gradient methods, and error bound for structured convex

optimization. Technical report, University of Florida (2014)
45. Larsson, T., Patriksson,M., Strömberg, A.B.: Conditional subgradient optimization—theory and appli-

cations. Eur. J. Oper. Res. 88(2), 382–403 (1996)
46. Larsson, T., Patriksson,M., Strömberg, A.B.: Ergodic, primal convergence in dual subgradient schemes

for convex programming. Math. Program. 86, 283–312 (1999)
47. Lemaréchal, C.: An extension of Davidon methods to nondifferentiable problems. In: Balinski, M.,

Wolfe, P. (eds.) Nondifferentiable Optimization,Mathematical Programming Study, vol. 3, pp. 95–109.
North-Holland, Amsterdam (1975)

48. Lemaréchal, C., Renaud, A.: A geometric study of duality gaps, with applications. Math. Program. 90,
399–427 (2001)

49. Necoara, I., Suykens, J.: Application of a smoothing technique to decomposition in convex optimiza-
tion. IEEE Trans. Autom. Control 53(11), 2674–2679 (2008)

50. Nedic, A., Bertsekas, D.: Incremental subgradient methods for nondifferentiable optimization. Math.
Program. 120, 221–259 (2009)

51. Nemirovski, A., Yudin, D.: Problem Complexity and Method Efficiency in Optimization. Wiley, New
York (1983)

52. Nesterov, Y.: Excessive gap technique in nonsmooth convex minimization. SIAM J. Optim. 16, 235–
249 (2005)

123

Antonio Frangioni et al.

53. Nesterov, Y.: Smooth minimization of non-smooth functions. Math. Program. 103, 127–152 (2005)
54. Nesterov, Y.: Primal-dual subgradient methods for convex optimization. Math. Program. 120, 221–259

(2009)
55. Nesterov, Y.: Universal gradient methods for convex optimization problems. Math. Program. 152,

381–404 (2014)
56. Neto, E., De Pierro, A.: Incremental subgradients for constrained convex optimization: a unified frame-

work and new methods. SIAM J. Optim. 20(3), 1547–1572 (2009)
57. Ouorou, A.: A proximal cutting plane method using Chebychev center for nonsmooth convex opti-

mization. Math. Program. 119(2), 239–271 (2009)
58. Polyak, B.: Minimization of unsmooth functionals. Zh. Vychisl. Mat. Fiz 9(3), 509–521 (1969)
59. Sherali, B., Choi, B., Tuncbilek, C.: A variable target value method for nondifferentiable optimization.

Oper. Res. Lett. 26, 1–8 (2000)
60. Sherali, B., Lim, C.: On embedding the volume algorithm in a variable target value method. Oper. Res.

Lett. 32, 455462 (2004)
61. Shor, N.: Minimization Methods for Nondifferentiable Functions. Springer, Berlin (1985)
62. Solodov, M., Zavriev, S.: Error stability properties of generalized gradient-type algorithms. J. Optim.

Theory Appl. 98(3), 663–680 (1998)
63. Tseng, P.: Conditional gradient sliding for convex optimization. Math. Program. 125, 263–295 (2010)
64. Wolfe, P.: Amethod of conjugate subgradients forminimizing nondifferentiable functions. In: Balinski,

M., Wolfe, P. (eds.) Nondifferentiable Optimization, Mathematical Programming Study, vol. 3, pp.
145–173. North-Holland, Amsterdam (1975)

123

	On the computational efficiency of subgradient methods: a case study with Lagrangian bounds
	Abstract
	1 Introduction
	2 A general subgradient scheme
	2.1 Building blocks of subgradient methods
	2.1.1 Stepsize rules
	2.1.2 Deflection
	2.1.3 Projection
	2.1.4 Incremental approaches
	2.1.5 Active set
	2.1.6 Summary

	2.2 A generic subgradient scheme

	3 Numerical experiments
	3.1 Lagrangian relaxations for FC-MCND
	3.2 Experimental setup
	3.3 Results for the FR
	3.4 Results for the KR
	3.5 Comparison with Cplex and Bundle methods

	4 Conclusion
	Acknowledgements
	Appendix
	General parameters of SM
	Parameters of the SR
	Parameters of the DR
	Detailed results of the tuning phase

	References

