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MANAGEMENT SCIENCE 
Vol. 16, No. 11, July, 1970 

Printed in U.S.A. 

ELEMENTS OF LARGE-SCALE MATHEMATICAL 
PROGRAMMING 

PART I: CONCEPTS*tJ? 
ARTHUR M. GEOFFRION 

University of California, Los Angeles 

A framework of concepts is developed which helps to unify a substantial portion 
of the literature on large-scale mathematical programming. These concepts fall 
into two categories. The first category consists of problem manipulations that can 
be used to derive what are often referred to as "master" problems; the principal 
manipulations discussed are Projection, Inner Linearization, and Outer Lineariza- 
tion. The second category consists of solution strategies that can be used to solve 
the master problems, often with the result that "subproblems" arise which can then 
be solved by specialized algorithms. The Piecewise, Restriction, and Relaxation 
strategies are the principal ones discussed. Numerous algorithms found in the litera- 
ture are classified according to the manipulation/strategy pattern they can be 
viewed as using, and the usefulness of the framework is demonstrated by using it (see 
Part II of this paper) to rederive a representative selection of algorithms. 

The material presented is listed in the following order: The first section is intro- 
ductory in nature, and discusses types of large-scale problems, the scope of discus- 
sion and the literature, and the notation used. The second section, entitled "Prob- 
lem Manipulations: Source of 'Master' Problems" covers the subjects of projection, 
inner linearization and outer linearization. The third section, "Solution Strategies: 
Source of 'Subproblems'," discusses piecewise strategy, restriction and relaxation. 
The fourth section is entitled "Synthesizing Known Algorithms from Manipulations 
and Strategies," and is followed by a concluding section and an extensive bibli- 
ography. 

1. Introduction 

The development of efficient optimization techniques for large structured mathe- 
matical programs is of major significance in economic planning, engineering, and 
management science. A glance at the bibliography of this paper will reveal the magni- 
tude of the effort devoted to the subject in recent years. The purpose of this paper is to 
suggest a unifying framework to help both the specialist and nonspecialist cope with 
this rapidly growing body of knowledge. 

The proposed framework is based on a relative handful of fundamental concepts that 
can be classified into two groups: problem manipulations and solution strategies. Prob- 
lem manipulations are devices for restating a given problem in an alternative form that 

* Received April 1969. 
t This is the ninth in a series of twelve expository papers commissioned jointly by the Office 

of Naval Research and the Army Research Office under contract numbers Nonr-4004(00) and DA 
49-092-ARO-16, respectively. 

I Although this paper was originally prepared for publication in a single installment, an edi- 
torial decision was made to divide it into two parts because of its exceptional length. The reader 
may simply ignore this division, which has not occasioned any significant changes in the body of 
the text. All references are found at the end of Part II, which appears next in this issue. 

? Support for this work was provided by the Ford Foundation under a Faculty Research Fel- 
lowship, by the National Science Foundation under Grant GP-8740, and by the United States Air 
Force under Project RAND. It is a pleasure to acknowledge the helpful comments of A. Feinberg, 
B. L. Fox, and C. A. Holloway. 
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is apt to be more amenable to solution. The result is often what is referred to in the 
literature as a "master" problem. Dualization of a linear program is one familiar 
example of such a device. ?2 discusses three others: Projection, Inner Linearization, 
and Outer Linearization. Solution strategies, on the other hand, reduce an optimization 
problem to a related sequence of simpler optimization problems. This often leads to 
"subproblems" amenable to solution by specialized methods. The Feasible Directions 
strategy is a well-known example, and ?3 discusses the Piecewise, Restriction, and 
Relaxation strategies. The reader is probably already familiar with special cases of 
most of these concepts, if not with the names used for them here; the new terminology 
is introduced to emphasize the generality of the ideas involved. 

By assembling these and a few other problem manipulations and solution strategies 
in various patterns, one can rederive the essential aspects of most known large-scale 
programming algorithms and even design new ones. ?4 (see Part II of this paper) 
illustrates this for Benders Decomposition, Dantzig-Wolfe Decomposition, Rosen's 
Primal Partition Progranmming method, Takahashi's "local" approach, and a pro- 
cedure recently devised by the author for nonlinear decomposition. 

Although much of the presentation is elementary, for full appreciation the reader 
will find it necessary to have a working knowledge of the theory and computational 
methods of linear and nonlinear programming about at the level of a first graduate 
course in each subject. 

1.1 Types of Large-Scale Problems 

It is important to realize that size alone is not the distinguishing attribute of the field 
of "large-scale programming," but rather size in conjunction with structure. Large- 
scale programs almost always have distinctive and pervasive structure beyond the 
usual convexity or linearity properties. The principal focus of large-scale programming 
is the exploitation of various special structures for theoretical and computational 
purposes. 

There are, of course, many possible types of structure. Among the commonest and 
most important general types are these: multidivisional, combinatorial, dynamic, and 
stochastic. Mlultidivisional problems consist of a collection of interrelated "subsystems" 
to be optimized.' The subsystems can be, for example, modules of an engineering sys- 
tem, reservoirs in a water resources system, departments or divisions of an organiza- 
tion, production units of an industry, or sectors of an economy. Combinatorial prob- 
lems typically have a large number of variables because of the numerous possibilities 
for selecting routes, machine setups, schedules, etc.2 Problems with dynamic aspects 
grow large because of the need to replicate constraints and variables to account for a 
number of time periods.3 And problems with stochastic or uncertainty aspects are often 
larger than they would otherwise be in order to account for alternative possible reali- 
zations of imperfectly known entities.4 A method that successfully exploits one specific 

1 See, e.g., Aoki 68, Bradley 67, Gould 59, Hass 68, Kornai and Liptak 65, Lasdon and Schoeffler 
66, Malinvaud 67, Manne and Markowitz 63, Parikh and Shephard 67, Rosen and Ornea 63, Tcheng 
66. 

2 See, e.g., Appelgren 69, Dantzig 60, Dantzig, Blattner and Rao 67, Dantzig, Fulkerson and 
Johnson 54, Dantzig and Johnson 64, Ford and Fulkerson 58, Gilmore and Gomory 61, 63, and 65, 
Glassey 66, Held and Karp 69, Midler and Wollmer 69, Rao and Zionts 68. 

3 See, e.g., Charnes and Cooper 55, Dantzig 55b, 59, Dzielinski and Gomory 65, Glassey 68, 
Rao 68, Robert 63, Rosen 67, Van Slyke and Wets 69, Wagner 57, Wilson 66. 

4See, e.g., Dantzig and Madansky 61, El Agizy 67, Van Slyke and Wets 69, Wolfe and Dantzig 
62. 
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654 ARTHUR GEOFFRION 

structure can usually be adapted to exploit other specific structures of the same general 
type. Perhaps needless to say, problems are not infrequently encountered which fall 
simultaneously into two or more of these general categories. 

The presence of a large number of variables or constraints can be due not only to the 
intrinsic nature of a problem as suggested above, but also to the chosen representation 
of the problem. Sometimes a problem with a few nonlinearities, for example, is ex- 
pressed as a completely linear program by means of piecewise-linear or tangential 
linear approximation to the nonlinear functions or sets (cf. ??2.2, 2.3). Such approxi- 
mations usually greatly enlarge the size of the problem.' 

1.2 Scope of Discussion and the Literature 

The literature on the computational aspects of large-scale mathematical program- 
ming can be roughly dichotomized as follows: 

I. Work aimed at improving the computational efficiency of a known solution 
technique (typically the Simplex Method) for special types of problems. 

II. Work aimed at developing fundamentally new solution techniques. 
The highly specialized nature of the category I literature and the availability of several 
excellent surveys thereon leave little choice but to focus this paper primarily on cate- 
gory II. Fortunately this emphasis would be appropriate anyway, since category II is 
far more amorphous and in need of clarification. 

Category I. The predominant context for category I contributions is the Simplex 
Method for linear programming. The objective is to find, for various special classes of 
problems, ways of performing each Simplex iteration in less time or using less primary 
storage. This work is in the tradition of the early and successful specialization of the 
Simplex Method for transportation problems and problems with upper-bounded 
variables. The two main approaches may be called inverse compactification and mech- 
anized pricing. 

Inverse compactification schemes involve maintaining the basis inverse matrix or 
an operationally sufficient substitute in a more advantageous form than the explicit 
one. One of the earliest and most significant examples is the "product form" of the 
inverse [Dantzig and Orchard-Hays 54], which takes advantage of the sparseness of 
most large matrices arising in application. Other schemes involve triangular factoriza- 
tion, partitioning, or use of a "working basis" that is more tractable than the true one. 
See part A of Table 1. A survey of many such contributions is found in ?II of [Dantzig 
68]. The interested reader should also consult [Willoughby 69] which, in the course of 
collecting a number of recent advances in the methods of dealing with sparse matrices, 
points out much pertinent work done in special application areas such as engineering 
structures, electrical networks, and electric power systems. Well over a hundred 
references are given. 

Mechanized pricing, sometimes called column generation, involves the use of a sub- 
sidiary optimization algorithm instead of direct enumeration to find the best nonbasic 
variable to enter the basis when there are many variables.6 The first contribution of 
this sort was [Ford and Fulkerson 58], in which columns were generated by a network 

I See, e.g., Charnes and Lemke 54, Gomory and Hu 62, Kelley 60. 
6 It is also possible to mechanize the search for the exiting basic variable when there are many 

constraints (e.g., Gomory and Ru 62, ?4) or when what amounts to the Dual Method is used (e.g., 
?3 of Gomory and Hu 62, Abadie and Williams 63, Whinston 64, and part A of Table 2). 
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flow algorithm. Subsequent authors have proposed generating columns by other net- 
work algorithms, dynamic programming, integer programming, and even by linear 
programming itself. See part B of Table 1. Excellent surveys of such contributions are 
[Balinski 64] and [Gomory 631. 

Category I contributions of comparable sophistication are relatively rare in the 
literature on nonlinear problems. It has long been recognized that it is essential to take 
advantage of the recursive nature of most of the computations; that is, one should 
obtain the data required at each iteration by economically updating the data available 
from the previous iteration, rather than by operating each time on the original problem 
data. In Rosen's gradient projection algorithm, for example, the required projection 
matrix is updated at each iteration rather than computed ab initio. This is quite dif- 
ferent, however, from "compacting" the projection matrix for a particular problem 
structure, or "mechanizing" the search for the most negative multiplier by means of 
a subsidiary optimization algorithm. Little has been published along these lines (see, 
however, p. 153ff. and ?8.3 of [Fiacco and McCormick 68] and [Rutenberg 70]). Of 
course, many nonlinear algorithms involve a sequence of derived linear programs and 
therefore can benefit from the techniques of large-scale linear programming. 

Category II. We turn now to work aimed at developing new solution techniques for 
various problem structures-the portion of the literature to which our framework 
of fundamental concepts is primarily addressed. 

As mentioned above, the fundamental concepts are of two kinds: problem manipu- 
lations and solution strategies. The key problem manipulations (?2) are Dualization, 
Projection, Inner Linearization, and Outer Linearization, while the key solution 
strategies (?3) are Feasible Directions, Piecewise, Restriction and Relaxation. These 
building block concepts can be used to reconstruct many of the existing computational 
proposals. Using Projection followed by Outer Linearization and Relaxation, for 
example, we can obtain Benders' Partitioning Procedure. Rosen's Primal Partition 
Programming algorithm can be obtained by applying Projection and then the Piece- 
wise strategy. Dantzig-Wolfe Decomposition employs Inner Linearization and Re- 
striction. Similarly, many other existing computational proposals for large-scale 
programming can be formulated as particular patterns of problem manipulations and 
solution strategies applied to a particular structure. 

See Table 2 for a classification of much of the literature of category II in terms of 
such patterns. One key or representative paper from each pattern is italicized to 

TABLE 1 
Some Work Aimed at Improving the Efficiency of the 

Simplex Method for Large-Scale Problems 

A. Inverse Compactification 
Dantzig and Orchard-Hays 54; Dantzig 55a, 55b, 63b; Markowitz 57; Dantzig, Harvey, and 
McKnight 64; Heesterman and Sandee 65; Kaul 65; Bakes 66; Bennett 66; Bennett and 
Green 66; Saigal 66; Dantzig and Van Slyke 67; Sakarovitch and Saigal 67; Grigoriadis 69; 
Willoughby 69. 

B. Mechanized Pricingt 
Ford and Fulkerson 58; Dantzig 60; Gilmore and Gomory 6141 63, 65; Dantzig and Johnson 
64; Bradley 65, Sec. 3; Glassey 66; Tomlin 66; Dantzig, Blattner and Rao 67; Elmaghraby 
68; Lasdon and Mackey 68; Rao 68, Sec. II; Rao and Zionts 68; Graves, Hatfield and Whin- 
ston 69; Fox 69; Held and Karp 69, Sec. 4. 

t Most of the references in part C of Table 2 also use mechanized pricing. 
$ Discussed in Sec. 3.2. 
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656 ARTHUR GEOFFRION 

TABLE 2 
Classification of Some References by Pattern: 
Problem Manipulation(s)/Solution Strategy 

A. Projection, Outer Linearization/Relaxation 
Benders 62; Balinski and Wolfe 63; Gomory and Hu 64, pp. 351-354; Buzby, Stone and Tay- 
lor 65; Weitzman 67; Geoffrion 68b, Sec. 3; Van Slyke and Wets 69, Sec. 2; Geoffrion 70. 

B. Projection/Piecewise 
Rosen 63, 64; Rosen and Ornea 63; Beale 63; Gass 66; Varaiya 66; Chandy 68; Geoffrion 68b, 
Sec. 5; Grigoriadis and Walker 68. 

C. Inner Linearization/Restriction 
Dantzig and Wolfe 60; Dantzig and Madansky 61, p. 175; Williams 62; Wolfe and Dantzig 
62; Dantzig 63a, Ch. 24; Baumol and Fabian 64; Bradley 65, Sec. 2; Dzielinski and Gomory 
65; Madge 65; Tcheng 66; Tomlin 66; Whinston 66; Malinvaud 67, Sec. V; Parikh and Shep- 
hard 67; Elmaghraby 68; Hass 68; Rao 68, Sec. III; Appelgren 69; Robers and Ben-Israel 70. 

D. Projection/Feasible Directions 
Zschau 67; Abadie and Sakarovitch 67; Geoffrion 68b, Sec. 4; Silverman 68; Grinold 69, Secs. 
IV and V. 

E. Dualization/Feasible Directions 
Uzawa 58; Takahashi 64, "local" approach; Lasdon 64, 68; Falk 65, 67; Golshtein 66; Pearson 
66; Wilson 66; Bradley 67 (Sec. 3.2), 68 (Sec. 4); Grinold 69, Sec. III. 

signify that it is discussed in some detail in ?4. Familiarity with one such paper from 
each pattern should enable the reader to assimilate the other papers, given an under- 
standing of the fundamental concepts at the level of ??2 and 3. 

Table 2 does not pretend to embrace the whole literature of category II. There un- 
doubtedly are other papers that can naturally be viewed in terms of the five patterns 
of Table 2, and there certainly are papers employing other patterns.7 Sections 2 and .3 
mention other papers that can be viewed naturally in terms of one of the problem 
manipulations or solution strategies discussed there. Still other contributions seem to 
employ manipulations or strategies other than (and sometimes along with) those 
identified here;8 regrettably, this interesting work does not fall entirely within the 
scope of this effort. 

Another group of papers not dealt with in the present study are those dealing with 
an infinite number of variables or constraints, although a number of contributions 
along these lines have been made, particularly in the linear case-see, e.g., [Charnes, 
Cooper and Kortanek 69], [Hopkins 69]. Nor do we consider the literature on mathe- 
matical programs in continuous time (a recent contribution with a good bibliography 
is [Grinold 68]), or literature on the interface between mathematical programming 
and optimal control theory (e.g., [Dantzig 66], [Rosen 67], [Van Slyke 68]). 

1.3 Notation 

Although the notation we employ is not at odds with customary usage, the reader 
should keep a few conventions in mind. 

Lowercase letters are used for scalars, scalar-valued functions, and vectors of varia- 
bles or constants. Except for gradients (e.g., Vf(x) = (Of(x)/aOx1 , * * * ,Of(x)1,Ox.)) 

7E.g.: Inner Linearization/Relaxation: Abadie and Williams 63, Whinston 64. Dualization, 
Outer Linearization/Relaxation: Takahashi 64 ("global" approach), Geoffrion 68b (?6), Fox 70. 
Inner Linearization, Projection, Outer Linearization/Relaxation: Metz, Howard and Williamson 
66. Dualization/Relaxation: Webber and White 68. 

8E.g.: Balas 65 and 66, Bell 66, Charnes and Cooper 55, Gomory and Hu 62 (Secs. 1 and 2), 
Kornai and Liptak 65, Kronsj6 68, Orchard-Hays 68 (Ch. 12), Rech 66, Ritter 67b. 

This content downloaded from 129.215.5.255 on Fri, 31 May 2013 09:45:03 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


ELEMENTS OF LARGE-SCALE MATHEMATICAL PROGRA1MMING. I 657 

all vectors are column vectors unless transposed. Capital letters are used for matrices 
(A, B, etc.), sets (X, Y, etc.) and vector-valued functions (e.g., G(x) = [gi(x), **, 
gm(x)]t). The dimension of a matrix or vector-valued function is left unspecified when 
it is immaterial to the discussion or obvious from context. The dimension of x, how- 
ever, will always be n. The symbol " < " is used for vector inequalities, and " < " for 
scalar inequalities. "-" means "equal by definition to." The notation s.t., used in 
stating a constrained optimization problem, means "subject to." Convex polytope 
refers to the solution set of a finite system of linear equations or inequations; it need 
not be a bounded set. 

2. Problem Manipulations: Source of "Master" Problems 

A problem manipulation is defined to be the restatement of a given problem in an 
alternative form that is essentially equivalent but more amenable to solution. Nearly 
all of the so-called master problems found in the large-scale programming literature 
are obtained in this way. 

A very simple example of a problem manipulation is the introduction of slack vari- 
ables in linear programming to convert linear inequality constraints into linear equali- 
ties. Another is the restatement of a totally separable problem like (here xi may be a 
vector) 

Minimize,,...Xk JZIfi(xj) s.t. GC(xi) _ 0, i = 1, *,k 

as k independent problems, each of the form 

Minimize.,i fi(xi) s.t. Gi(xi) >_ O. 

This manipulation crops up frequently in large-scale optimization, and will be called 
separation. 

These examples, although mathematically trivial, do illustrate the customary pur- 
pose of problem manipulation: to permit existing optimization algorithms to be applied 
where they otherwise could not, or to take advantage in some way of the special struc- 
ture of a particular problem. The first example permits the classical Simplex Method 
which deals directly only with equality constraints, to be applied to linear programs 
with inequality constraints. The second example enables solving a totally separable 
problem by the simultaneous solution of smaller problems. Even if the smaller prob- 
lems are solved sequentially rather than simultaneously, a net advantage is still 
probable since for most solution methods the amount of work required increases much 
faster than linearly with problem size. 

More specifically, the three main objectives of problem manipulation in large-scale 
programming seem to be: 

(a) to isolate familiar special structures imbedded in a given problem (so that 
known efficient algorithms appropriate to these structures can be used); 

(b) to induce linearity in a partly nonlinear problem via judicious approximation 
(so that the powerful linear programming algorithms can be used); 

(c) to induce separation. 
We shall discuss in detail three potent devices frequently used in pursuit of these ob- 
jectives: Projection, Inner Linearization, and Outer Linearization. 

Projection (?2.1), sometimes known as "partitioning" or "parameterization," is a 
device which takes advantage in certain problems of the relative simplicity resulting 
when certain variables are temporarily fixed in value. In [Benders 62] it is used for 

This content downloaded from 129.215.5.255 on Fri, 31 May 2013 09:45:03 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


658 ARTHUR GEOFFRION 

objective (a) above to isolate the linear part of a "semilinear" program (see ?4.1), 
while in [Rosen 64] it is used to induce separation (see ?4.2). 

Inner Linearization (?2.2) and Outer Linearization (?2.3) are devices for objective 
(b) long used in nonlinear programming. Inner Linearization goes back at least to 
[Charnes and Lemke 54], in which a convex function of one variable is approximated 
by a piecewise-linear convex function. Outer Linearization involves tangential approxi- 
mation to convex functions as in [Kelley 60] (see ?3.3). Both devices have important 
uses in large-scale programming. Inner Linearization is the primary problem manipu- 
lation used in the famous Dantzig-Wolfe decomposition method of linear and nonlinear 
programming (?4.3). One important use of Outer Linearization is as a means of 
dealing with nonlinearities introduced by Projection ( ?4.1 ). 

Perhaps the most conspicuous problem manipulation not discussed here is Dualiza- 
tion. Long familiar in the context of linear programs, dualization of nonlinear pro- 
grams9 is especially valuable in pursuit of objectives (a) and (c). This significant omis- 
sion is made because of space considerations, and also to keep the presentation as 
elementary as possible. One algorithm relying on nonlinear dualization is mentioned 
in ?4.5; see also part E of Table 2 and [Geoffrion 68b; ?6.1]. 

Other problem manipulations not discussed here, mostly quite specialized, can be 
found playing conspicuous roles in [Charnes and Cooper 55], [El Agizy 67], [Gomory 
and Hu 62], [Weil and Kettler 68]. 

We now proceed to discuss Projectioil and Inner and Outer Linearization. ?3 will 
discuss the solution strategies that can be applied subsequent to these and other prob- 
lem manipulations. The distinction between problem manipulations and solution 
strategies is that the former replaces an optimization problem by one that is essentially 
equivalent to it, while the latter replaces a problem by a sequence of related but much 
simpler optimization problems. 

2.1 Projection 

The problem 

(2.1) MaximizexEx;y,Ey f(x, y) s.t. G(x, y) _ 0 

involves optimization over the joint space of the x and y variables. We define its 
projection onto the space of the y variables alone as 

(2.2) MaximizevyE [Sup.Exf(x, y) s.t. G(x, y) _ 01. 

The maximand of (2.2) is the entire bracketed quantity-call it v(y)-which is 
evaluated, for fixed y, as the supremal value of an "inner" maximization problem in 
the variables x. We define v(y) to be - oo if the inner problem is infeasible. The only 
constraint on y in (2.2) is that it must be in Y, but obviously to be a candidate for 
the optimal solution y must also be such that the inner problem is feasible, i.e., y must 
be in the effective domain V of v, where 

(2.3) V - {y: v(y) > -oo} {y: G(x, y) Ofor some x E XI. 

Thus we may rewrite (2.2) as 

(2.4) Maximize,E Yn v v(y). 

The set V can be thought of as the projection of the constraints x E X 

I See, e.g., Rockafellar 68, Geoffrion 69. 
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G(x,y)>Ot 
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. .......... ..*N l<. o*..... ,jh. . : ., ........... ..: .. 

4 

FiGUREM 1. Depiction of the set V 

and G(x, y) ?0 onto the space of the y variables alone. It is depicted for a simple case 
in Figure 1; X is an interval, the set I (x, y): G(x, y) >_ 0} is shaded, and the resulting 
V is an interval. It is often possible to obtain a more conventional and tractable rep- 
resentation of V than the definitional one (see, for example, the inequalities (4.5) of 
?4.1, [Kohler 67] and Theorem 2 of [Geoffrion 70]). 

The relationship between the original problem (2.1) and its projection (2.4) is as 
follows.10 The proof is elementary. 

THEOREM 1. Problem (2.1) is infeasible or- has unbounded value if an*d only if the same 
is true of problem (2.4). If (xO, y0) is optimal in (2. 1), then y0 must be optimal in (2.4). 
If y0 is optimal in (2.4) and x0 achieves the supremum of f(x, y0) subject to x E X and 
G(x, y0) ~! 0, then x0 together with y0 is optimal in (2.1). If y0 is el-optimal in (2.4) and 
x0 is withinE2 of achieving v(y0), then (xO, y0) is (el +6E2) -optimal in (2. 1). 

It should be emphasized that Projection is a very general manipulation-nlo special 
assumptions on X, Y, f, or G are required for Theorem 1 to hold, and any subset of 
variables whatsoever can be designated to play the role of y. When convexity assump- 
tions do hold, however, the following theorem shows that (2.2) is a concave program. 

THEOREm 2. Assume that X and Y are convex sets, and that f and each component of G 
are concave on X X Y. Then the maximand v(y) in (2.2) is concave on Y. 

PROOF. Fix y0Y y' o Y and 0 < 0 < 1 arbitraril . Then 

v(0y0 + (1 - O)y') = SupXo,X1Exf(6xV0 + (1 - 6)x', 6y0 +(1-O)y') 

s.t. G'(6x0 + (1 - O)x', Oyo + (1 - 6)y') ?_ 0 

> Supxo,x'Exf(6X0 + (1 - O)X', OYI0+ (1 - 6)y') 

s.t. G(xt, yo) j 0, G(x', y') > 0 

> SUP, Vxhax tf(X0, Yn) + (1 - e)f(xa , Y,) 

s.t. G(x[, yo) 670, G(xa, y') o 0 

-Ov(y0) + (1 - )(Y) 

10 One may read (2.2) for (2.4) in Theorem 1, except that (2.2) can be feasible with value -as 

when (2.1) is infeasible. 
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where the equality or inequality relations follow, respectively, from the convexity of 
X, the concavity of G, the concavity of f, and separability in x? and x'. 

Since V is easily shown to be a convex set when v is concave, it follows under the 
hypotheses of Theorem 2 that (2.4) is also a concave program. 

Projection is likely to be a useful manipulation when a problem is significantly 
simplified by temporarily fixing the values of certain variables. In [Benders 62], (2.1 ) 
is a linear program for fixed y (see ?4.1). In [Rosen 64], (2.1) is a separable linear 
program for fixed y (cf. ?4.2). See Table 2 for numerous other instances in which Pro- 
jection plays an important role. 

It is interesting to note that Projection cani be applied sequentially by first projecting 
onto a subset of the variables, then onto a subset of these, and so on. The result is a 
dynamic-programming-like reformulation [Bellman 57], [Dantzig 59, p. 61 if.], [Nem- 
hauser 64]. Many dynamic programming problems can fruitfully be viewed in terms 
of sequential projection, and conversely, but we shall not pursue this matter here. 

It may seem that the maximand of the projected problem (2.2) is excessively 
burdensome to deal with. And indeed it may be, but the solution strategies of ?3 en- 
able many applications of Projection to be accomplished successfully. The key strate- 
gies seem to be Relaxation preceded by Outer Linearization (cf. ?4.1), the Piecewise 
strategy (cf. ?4.2), and Feasible Directions (cf. ?4.4). Of course if y is only one- 
dimensional, (2.2) can be solved in a parametric fashion [Joksch 64], Ritter [67a]. 

2.2 Inner Linearization 

Inner Linearization is an approximation applying both to convex or concave func- 
tions and to convex sets. It is conservative in that it does not underestimate (over- 
estimate) the value of a convex (concave) function, or include any points outside of 
an approximated convex set. 

An example of Inner Linearization applied to a convex set X in two dimensions is 
given in Figure 2, where X has been approximated by the convex hull of the points 
xl * *, x5 lying within it. X has been linearized in the sense that the approximating 
set is a convex polytope (which, of course, can be specified by a finite number of linear 
inequalities). The points x', * * , 5 are called the base. The accuracy of the approxi- 
mation can be made as great as desired by making the density of the base sufficiently 
high. 

An example of Inner Linearization applied to a function of one variable is given in 
Figure 3, where the function f has been approximated on the interval [xl, x6] by a 
piecewise-linear function (represented by the dotted line) that accomplishes linear 
interpolation between the values of f at the base points xl, , X5. The approximation 

x2 

x2 

XI 
FIGURE 2. Inner Linearization of a convex set 
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f(x)~~~~~~~~~~~ 

X1 x2 X3 X 4 X5 

FIGURE 3. Inner Linearization of a convex function 

is "innier" in the sense that the epigraph of the approximating function lies entirely 
within the epigraph of the approximated function. (The epiqraph of a convex (concave ) 
function is the set of all points lying on or above (below) the graph of the function.) 

Let us further examine these two graphical examples of Inner Linearization in the 
context of the special problem 

(2.5) MinimnizexExf(X) s.t. G(x) _< O, 

wvhere n = 2, X is a convex set, and all functions are convex. Inner-linearizing X as in 
Figuire 2 yields the approximation 

(2.6) M\inimize,,,of(Z5=jaorxj) s.t. G(7,3L1aojxj) < , J:=1l tj - 

Note that the x variables are replaced by the "weighting" variables a 3, one for each 
chosen base point in X. Inner-linearizing f now as in the two-dimensional analog of 

Figure 3 yields 

(2.7) M\inimizea, 5~oELiaf(xj) s.t. G(E5Ljajxj) _ , J:Loaj = 1. 

We have taken the bases for the approximations to X and f to coincide, since normally 
only olie base is introduced for a given problem. An exception to this general rule may 
occur, however, when some of the functions are separable, for then it may be desirable 
to introduce different bases for different subsets of variables. Suppose, for example, 
that f(x ) = fl (X]) + f2 (X2), X = R2, and that we wish to use (xjl, .. * *,Xi') as a base 
for inner-linearizing fi and (XJl, * X * 2') as a base for f2 . Then the corresponding 
approximation to ( 2.5 ) would be 

Minlimizeel _? ;a2 _O 4=, alifi(xij) + ELI a2jf2(X2j) 

s.t. G( 4=lex jli, 
- 

E=l ae2jX2i _ O, , a=vl= and j=1 a2j=1 

Problems (2.6), (2.7) and (2.8) are all convex programs. 
The general nature of Inner Linearization should be clear from these examples. It is 

important to appreciate that there is a great deal of flexibility in applying Inner Line- 
arization-both as to which sets and functions are inner-linearized, and as to wahich 
base is used. Inner-linearizing everything results, of course, in a liniear program, 
although it is by no means necessary to inner-linearize everything (see ?4.3). The base 

This content downloaded from 129.215.5.255 on Fri, 31 May 2013 09:45:03 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


662 ARTHUR GEOFFRION 

can be chosen to approximate the set of points satisfying any subset whatever of the 
given constraints; the constraints in the selected subset are replaced by the simple non- 
negativity conditions on the weighting variables plus the normalization constraint, 
while the remaining constraints are candidates for functional Inner Linearization with 
respect to the chosen base. Or, if desired, the base can be chosen freely from the whole 
space of the decision variables (this can be thought of as corresponding to the selection 
of an empty set of constraints). Each of the given constraints, then, is placed in one 
of three categories, any of which may be empty: the constraints defining the convex 
set approximated by the chosen base, those that are inner-linearized over the base, 
and all others. 

Inner Linearization has long been used for convex (or concave) functions of a single 
variable [Charnes and Lemke 54]. It has also been used for non-convex functions of a 
single variable [Miller 631. Techniques based on this manipulation are sometimes called 
"separable programming" methods because they deal with functions that are linearly 
separable into functions of one variable (e.g., f(x)- Z= 1 f4(xi)). 

It is easy to determine-perhaps graphically-an explicit base yielding as accurate 
an inner-linearization as desired for a given function of one variable. It is much more 
difficult, however, to do this for functions of many variables. Even if a satisfactory base 
could be determined, it would almost certainly contain a large number of points. This 
suggests the desirability of having a way to generate base points as actually needed in 
the course of computationally solving the inner-linearized problem. Hopefully it should 
be necessary to generate only a small portion of the entire base, with many of the 
generated points tending to cluster about the true optimal solution. Indeed there is a 
way to do this based on the solution strategy we call Restriction (?3.2). The net effect 
is that the Inner Linearization manipulation need only be done implicitly! Dantzig 
and Wolfe were the originators of this exceedingly clever approach to nonlinear pro- 
gramming [Dantzig 63a, Chapter 24]; we shall review this development in ?4.3. 

An important special case in which Inner Linearization can be used very elegantly 
concerns convex polytopes (the polytope could be the epigraph of a piecewise-linear 
convex function). Inner Linearization introduces no error at all in this case if the base 
is taken to coincide with the extreme points." As above, the extreme points can be 
generated as needed if the implicitly inner-linearized problem is solved by Restriction. 
This is the idea behind the famous Decomposition Principle for linear programming 
[Dantzig and Wolfe 60], which is reviewed in ?4.3. 

For ease of reference in the sequel, the well-known theorem asserting the exactness of 
Inner Linearization for convex polytopes [Goldman 56], is recited here. 

THEOREM 3. Any nonempty convex polytope X {x: Ax ? b} can be expressed as the 
vector sum (P + e of a bounded convex polyhedron (P and a cone -{x: Ax < 0}. (P in 
turn can be expressed as the convex hull of its extreme vectors (y1, * , yp), and e can be 
expressed as the nonnegative linear combinations of a finite set of spanning vectors 
(z4 , * * *, z). (If (P (respectively C) consists of just the 0-vector, take p (respectively q) 
equal to 0.) Thus there exist vectors (y,, * , yp ; z,, ... , zq) such that x E X if and 
only if 

X = D=1 aiyi + Zi==l oizi 
for some nonnegative scalars al * , a,p , . , fl such that ZP-1 ai = 1. Moreover, 
if the rank of A equals n (the number of its columns), then a representation with a minimal 

11 It is also necessary, of course, to introduce the extreme rays if the polytope is unbounded. 
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number of vectors is obtained by letting the yi's be the extreme vectors of X and by letting 
the zi's be distinct nonzero vectors in each of the extreme rays of C; this minimal representa- 
tion is unique up to positive multiples of the zi's. 

It should be noted that in mathematical programming the rank of A usually equals 
n, since nonnegativity constraints on the variables are usually included in X. If this is 
not the case, then X can always be imbedded in the nonnegative orthant of Rn+' by 
a simple linear transformation (viz., put xi = yi - Yo, where yi > 0, i = 0, * * *, n). 

There are also results having to do with economical inner linearizations of nonpoly- 
hedral sets. For example, there is the Theorem of Krein and Milman [Berge 63, p. 1671 
that every closed, bounded, nonempty convex set is the convex hull of its extreme 
points. Usually, however, it suffices to know that a convex set or function can be 
represented as accurately as desired by Inner Linearization over a sufficiently dense 
base. 

2.3 Outer Linearizatian 

Outer Linearization is complementary in nature to Inner Linearization, and also 
applies both to convex (or concave) functions and to convex sets. 

An example as applied to a convex set in two dimensions is given by Figure 4, where 
X has been approximated by a containing convex polytope that is the intersection 
of the containing half-spaces H1, * **, H4. The first three are actually supporting 
half-spaces that pass, respectively, through the points xl, x2, and x3 on the boundary 
of X. 

An example as applied to a function of one variable is given in Figure 5, where the 
function f has been approximated by the piecewise-linear function that is the upper 
envelope, or pointwise maximum, of the linear supporting functions s1(x), * * *, ss(x) 
associated with the points x', * * *, x6. A linear support for a convex function f at the 
point t is defined as a linear function with the property that it nowhere exceeds f in 
value, and equals f in value at x. 2 The epigraph of the approximating function contains 
the epigraph of the approximated function when Outer Linearization is used. 

Obviously Outer Linearization is opposite to Inner Linearization in that it generally 
underestimates (overestimates) the value of a convex (concave) function, and in- 
cludes not only the given convex set but points outside as well. The notion of con- 
jugacy (see, e.g., [Rockafellar 68]) is a logical extension, but need not be pursued here. 

That Outer Linearization truly linearizes a convex program like 

(2.9) MinimizexEYf(x) s.t. G(x) ? 0, 

should be clear. The approximation of X by a containing convex polytope can only 
introduce linear constraints; the approximation of gi by the pointwise maximum of a 
collection of pi linear supports, say, obviously leads to pi linear inequalities; and the 
approximation of f by the pointwise maximum of p linear supports leads to p addi- 
tional linear inequalities after one invokes the elementary manipulation of minimizing 
an upper bound on f in place of f itself.'3 If all nonlinear functions are dealt with in 
this fashion, the approximation to (2.9) is a linear program. 

As with Inner Linearization, there is great latitude concerning which sets and fune- 

12 If f is differentiable at x, then f(x) + Vf(x) (x - x) is a linear support at x. 
13 E. g., Min, E X Maxi { s i (x) } = Minx E x;' af s.t . a > s i(x), all i. 
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2~~~~~~~~H 

El4 

H3 ~~~~~~~~~~~~~~~~x1 
FIGURE 4. Outer Linearization of a convex set 

f (x) 

S4(Z) 

Sl(x ) 2(X ) 

FIGURE 5. Outer Linearization of a convex function 

tions are to be outer-linearized, and which approximants14 are to be used. In general, 
the objective function may or may not be outer-linearized, and each constraint is 
placed into one of three categories: the ones that together define a convex set to be 
outer-linearized, the ones that are outer-linearized individually, and the ones that are 
not outer-linearized at all. 

The main obstacle faced with Outer Linearization is that an excessive number of 
approximants may be required for an adequate approximation, especially for sets in 
more than two dimensions and functions of more than one variable. Fortunately it 
turns out that it is usually possible to circumvent this difficulty, for there is a solution 
strategy applicable to the outer-linearized problem that enables approximants to be 
generated economically as needed without having to specify them in advance. We call 
this strategy Relaxation. The net effect is that the Outer Linearization manipulation 
need only be done implicitly. Two pioneering papers on this approach to nonlinear 

14 For the sake of unified terminology, we use the term approximant for a containing or support- 
ing half-space of a convex set, and also for a linear bounding function or linear support of a con- 
vex function. 
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programming are [Kelley 60] and [Dantzig and Madansky 61]. Relaxation and the 
first of these papers are discussed in ?3.3. 

In large-scale programming, Outer Linearization is especially important in conjunc- 
tion with Projection and Dualization. See, for example, the discussion of [Benders 62] 
in ?4.1. 

Approximation by Outer Linearization naturally raises the question of the existence 
of a supporting approximant at a given point. The main known result along these lines 
is that every boundary point of a convex set in Rn must have at least one supporting 
half-space passing through it. It follows that every closed convex set can be represented 
as the intersection of its supporting half-spaces [Berge 63, p. 166].1' It also follows that 
every convex (or concave) function with a closed epigraph has a supporting half- 
space to its epigraph at every point where the function is finite. Unfortunately, this 
is not quite the same as the existence of a linear support at every such point, since 
the supporting half-space may be "vertical" when viewed as in Figure 5. Various 
mild conditions could be imposed to preclude this kind of exceptional behavior, but 
for most purposes one may avoid the difficulty by simply working directly with the 
epigraph of a convex function. 

3. Solution Strategies: Source of "Subproblems" 

The previous section described several prominent problem manipulations for re- 
stating a given problem in a more or less equivalent form. The result is often referred 
to in specific applications as a "master" problem. Typically one then applies a solution 
strategy designed to facilitate optimization by reduction to a sequence of simpler 
optimization problems. Quite often this leads to subproblems amenable to solution by 
specialized algorithms. There are perhaps a half dozen principal solution strategies, 
each applicable to a variety of problems and implementable in a variety of ways. This 
section presents three such strategies that seem to be especially useful for large-scale 
problems: the so-called Piecewise, Restriction and Relaxation strategies. See Table 2 for 
a classification of many known algorithms in terms of the solution strategy they can 
be viewed as using. 

The Piecewise strategy is appropriate for problems that are significantly simpler 
if their variables are temporarily restricted to certain regions of their domain. The 
domain is (implicitly) sub-divided into such regions, and the problem is solved by 
considering the regions one at a time. Usually it is necessary to consider only a small 
fraction of all possible regions explicitly. The development of the Piecewise strategy 
for large-scale programming is largely due to J. B. Rosen, whose various Partition 
Programming algorithms invoke it subsequent to the Projection manipulation. 

Restriction is often appropriate for problems with a large number of nonnegative 
variables. It enables reduction to a sequence of problems in which most of the variables 
are fixed at zero. The Simplex Method itself turns out to be a special form of Restric- 
tion for linear programming, although the strategy also applies to nonlinear problems. 
Restriction is almost always used if Inner Linearization has been applied. 

Relaxation is useful for problems with many inequality constraints. It reduces 
such a problem to a recursive sequence of problems in which many of these constraints 
are ignored. The Dual Method of linear programming is a special form of Relaxation, 
although the strategy applies equally well to nonlinear problems. Outer Linearization 
is almost always followed by Relaxation. 

15 Of course, a convex polytope by definition admits an exact outer-linearization using only a 
finite number of approximants. 
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Perhaps the most important solution strategy not discussed here is the well-known 
Feasible Direction strategy [Zoutendijk 60], which reduces a problem with differenti- 
able functions to a sequence of one-dimensional optimization problems along carefully 
chosen directions. Most of the more powerful primal nonlinear programming algo- 
rithms utilize this strategy, but their application to large-scale problems is frequently 
hampered by non-differentiability (if Dualization or Projection is used) if not by sheer 
size (especially if Inner or Outer Linearization is used). See ?4.4 for an instance in 
which the first obstacle can be surmounted. 

We have also omitted discussion of the Penalty strategy (e.g., [Fiacco and 1M[c- 
Cormick 68]), which reduces a constrained problem to a sequence of essentially un- 
constrained problems via penalty functions. The relevance of this strategy to large- 
scale programming is hampered by the fact that penalty functions tend to destroy 
linearity and linear separability. 

3.1 Piecewise Strategy 

Suppose that one must solve 

(3.1) Maximize, E v (y), 

where v is a "piecewise-simple" function (e.g., piecewise-linear or piecewise-quadratic) 
in the sense that there are regions (pieces) Pl, P2, * *. of its domain such that v co- 
incides with a relatively tractable function vk on Pk. The situation can be depicted as 
in Figure 6, in which Y is a disk partitioned into four regions. Let us further suppose 
that v is concave on the convex set Y and that, given any particular point in Y, we 
can explicitly characterize the particular piece to which that point belongs, as well as 
v on that piece. Then it is natural to consider solving (3.1) in the following piecemeal 
fashion that takes advantage of the piecewise-simplicity of v. Note that it is unneces- 
sary to explicitly characterize all of the pieces in advance. 

The Piecewise Strategy 

Step 1 Let a point yo feasible in (3.1) be given. Determine the corresponding piece 
P0 containing yo and the corresponding function vo. 

Step 2 Maximize v?(y) subject to y E Y n P?. Let y' be an optimal solution (an 
infinite optimal value implies termination). 

y2 

P4 

Y1 
FIGURiE 6. 
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Step 3 Determine a piece P' adjacent to PI at y' such that v(y) > v(y') for some 
yeY n P' [if none exists, y' is optimal in (3.1)]. Determine the corresponding 
function v' and return to Step 2 with P', v', and y' in place of PO, v?, and y?. 

A hypothetical trajectory for y is traced in Figure 6 as a dotted line. Optimizations 
(Step 2) were performed in three regions before the optimal solution of (3.1) was 
found. 

The problem at Step 2 has a simpler criterion function than (3.1) itself, although 
it has more constraints (y G PF). If it is sufficiently simple by comparison with (3.1), 
then the Piecewise strategy is likely to be advantageous provided Steps 1 and 3 are 
not too difficult. Both Steps 2 and 3 can give rise to "subproblems" when this strategy 
is used for large-scale programming. 

The principal use of the Piecewise strategy in large-scale programming is for prob- 
lems resulting from Projection or Dualization. In both cases [cf. (2.2)], v involves the 
optimal value of an associated "inner" optimization problem parameterized by y. 
Evaluating v requires solving the inner problem, and so v is not explicitly available in 
closed form. Fortunately, it usually happens that evaluating v(yO) yields as a by- 
product a characterization of the piece PO containing y? on which v has relatively 
simple form. We shall illustrate this with a simple example. See also ?4.2 and [Geof- 
frion 68b; ?5]. 

The Piecewise strategy can also be used to motivate a generalization of the Simplex 
Method that allows the minimand to be a sum of piecewise-linear univariate convex 
functions [Orden and Nalbandian 68]. 
Example 

Constrained games and similar applications can lead to problems of the form 

(3.2) Maximize,Ey [Minimums ?o{Ht(y)x s.t. Ax = bl], 

where H(.) is a concave vector-valued function on the convex set Y. The maximand 
of (3.2), v, is concave because it is the pointwise minimum of a collection of concave 
functions of y. Suppose that we evaluate v at y? G Y, with the corresponding optimal 
solution of the inner problem being x?. The value is Ht(yO)xO. We know from the ele- 
mentary theory of linear programming that, since changes in y cannot affect the 
feasibility of x?, x? remains an optimal solution of the inner problem as y varies so 
long as the "reduced costs" remain of the right sign. Hence the value of v(y) is Ht(y)xo 
for all y such that 

(3.3) (H B(y) )tBA.- h,(y) < 0, all nonbasic j, 

where A . j is the jth column of A, and the component functions of HB correspond to 
the variables xi in the optimal basis matrix B at yo. Thus we see how to accomplish 
Step 1, and the problem to be solved at Step 2 is 

(3.4) Maximize,EyHt(y)xo s.t. (3.3). 

Note that (3.4) has the advantage over (3.2) of an explicit criterion function. Since 
xI > 0 Ht(.)xo is concave on Y. 

Suppose that y' is an optimal solution of (3.4).16 If y' is not optimal in (3.2), then 
there must be an alternate optimal basis B' at y' such that the corresponding problem 

16 It may be difficult to find a global optimum of (3.4) if H is not linear, for then (3.3) need 
not define a convex feasible region (unless B1A .y _ 0 for all nonbasic j). Fortunately, however, 
it can be seen from the concavity of v that a local optimum will generally suffice, although finite 
termination may now be in jeopardy. 
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(3.4) admits an improved solution. At worst, such an "improving" basis could be 
found by enumerating the alternative optimal bases at y'. At best, an improving basis 
would be revealed by a single active constraint among those of (3.3) at y'. One could 
also compute an improving feasible direction z' for (3.2) at y' (cf. ?4.4); the appro- 
priate improving basis would then be revealed by a parametric linear programming 
analysis of the inner problem. 

3.2 Restriction 

Restriction is a solution strategy principally useful for problems with many non- 
negative variables, the data associated with some of which perhaps being only im- 
plicitly available. Combinatorial models and Inner Linearization are two fertile sources 
of such problems. 

The basic idea is as follows: solve the given problem subject to the additional re- 
striction that a certain subset of the variables must have value 0; if the resulting solu- 
tion does not satisfy the optimality conditions of the given problem, then "release" 
one or more restricted variables (allow them to be nonnegative) and solve this less- 
restricted problem; continue in this fashion until the optimality conditions of the given 
problem are satisfied, at which point the procedure terminates. An important refine- 
ment forming an integral part of the strategy involves adding variables to, as well as 
releasing them from, the restricted set. Note that the variables restricted to 0 essen- 
tially drop out of the problem, thereby reducing its size and avoiding the need for 
knowing the associated data explicitly. If (as is usually the case) only a fairly small 
proportion of all variables actually are active (positive) at an optimal solution, then 
this strategy becomes quite attractive. 

The earliest and most significant embodiment of the Restriction strategy turns out 
to be the Simplex Method for linear programming itself. It can be shown, as we shall 
indicate, that a natural specialization of Restriction to the completely linear case yields 
the very same sequence of trial solutions as does the ordinary Simplex Method. All of 
the "column-generation" schemes for implementing the Simplex Method for linear 
programs with a vast number of variables can therefore be viewed in terms of Restric- 
tion. We shall review one of these schemes [Gilmore and Gomory 61] at the end of this 
section.'7 The usefulness of Restriction is not, however, limited to the domain of linear 
programming. It will be shown in ?4.3 how this strategy yields, in a nonlinear case, 
variations of the Dantzig-Wolfe method for convex programming. 

Formal Statement. Consider the problem 

(3.5) MaximizeXExf(x) s.t. gi(x) 2 0, i = 1, M , 

where f is a concave function on the nonempty convex set X C RN and the functions 
g, * * *, gm are all linear. All nonlinear constraints, as well as any linear constraints 
that are not to be restricted, are presumed to be incorporated in X. The typical re- 
stricted version of (3.5) is the (still concave) problem 

MaximizexEx f(x) s.t. gi(x) = 0, i E S, 

6gi(x) 0,if S, 

where S is a subset of the m constraint indices. [Note that we are presenting Restriction 
in a seemingly more general setting than the motivational one above in that general 
linear inequality constraints, as well as simple variable nonnegativities, are allowed to 

17 Another column-generating scheme is explained in ?4.3. See also part B of Table 1. 
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be restricted to equality. Actually, the present setting is no more general since slack 
variables could be introduced to accommodate the restriction of general linear in- 
equalities.] Some, none, or all of the xj > 0 type constraints (if any) may be included 
among gi, * * *, g. . The analyst is free to choose the linear inequality constraints to 
associate with X; the rest are candidates for restriction. 

An optimal solution of the restricted problem (3.6) will be denoted by x8, and a 
corresponding optimal multiplier vector (which, under mild assumptions, must exist) 
is denoted by g8 = (8 ... , Am'). The pair (x', /) satisfies the Kuhn-Tucker opti- 
mality conditions for (3.6), namely 

(i) x8 maximizes f(x) + Z i= ui8gi(x) over X 
(ii) x8 is feasible in (3.6) 

(iii) /,is > O, i f S 
(iv) p,&8gi(x8) 0 O, i { S. 
We are now ready to give a formal statement of Restriction applied to (3.5). No- 

tice that not only are constraints released from the current restricted set S at each 
iteration, but additions are also made whenever gi(x8) = 0 for some i t S, provided 
that f(x8) has just increased. 

The Restriction Strategy 

Step 1 Putf = -oo and S equal to any subset of indices such that the correspond- 
ing restricted problem (3.6) is feasible. 

Step 2 Solve (3.6) for an optimal solution x8 and associated optimal multipliers .i 

(if it has unbounded optimal value, the same must be true of the given problem 
(3.5) and we terminate). If ,ii > 0 for all i E S, then terminate (x8 is optimal 
in (3.5)); otherwise, go on to Step 3. 

Step 3 Put V equal to any subset of S that includes at least one constraint for which 
AjS < 0. If f(x8) > f, replace f by f(xJ) and S by E - V, where E{ 1 < i < 
m:gi(xe) = O}; otherwise (i.e., if f(x8)=f), replace S by S - V. Return 
to Step 2. 

We assume that the given problem (3.5) admits a feasible solution, so that Step 1 
is possible. To ensure that Step 2 is always possible, we also assume that the restricted 
problem (3.6) admits an optimal solution and multiplier vector whenever it is feas- 
ible and has finite supremal value. It is a straightforward matter to show that the 
termination conditions of Step 2 are valid, and Step 3 is obviously always possible. 
Thus the strategy is well defined, although we have deliberately not specified how to 
carry out each step. 

An important property is that the sequence (f(x8)) is nondecreasing. Thus the 
strategy yields an improving sequence of feasible solutions to (3.5). Moreover, (f(x8)) 
can be stationary in value at most a finite number of consecutive times, since the role 
of f at Step 3 is to ensure that S is augmented (before deletion by V) only when 
f(x8) has just increased. Hence termination must occur in a finite number of steps, 
for there is only a finite number of possibilities for S and each increase in f(x3) pre- 
cludes repetition of any previous S. 

Options and Relation to the Simplex Method. Let us now consider the main options of 
Restriction beyond the decision as to which of the linear inequality constraints will 
comprise gi, * * *, gm . 

(i) How to select the initial S at Step 1? 
(ii) How to solve (3.6) for (x8, a') at Step 2? 

(iii) What criterion to use in selecting V at Step 3? 
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How these options are exercised exerts a great influence upon the efficiency. 
As stated above, there is an intimate relationship between Restriction and the Simplex 

Method in the completely linear case. Given the linear program 

Maximize. c'x s.t. Ax = b, x > 0, 

define (3.5) according to the identifications 

f(x) = c x 

gi(x) = xi, all i 

X= {x:Ax = b), 

and specialize Restriction as follows: let the initial S be chosen to coincide with the 
nonbasic variables in an initial basic feasible solution, and select V at Step 3 to be the 
index of the most negative Ai'. It can then be shown, under the assumption of non- 
degeneracy, that Restriction is equivalent to the usual Simplex Method in that the set 
of nonbasic variables at the vth iteration of the Simplex Method necessarily coincides 
with E at the vth iteration of Restriction, and the vth basic feasible solution coincides 
with the vth optimal solution x8 of (3.6). Thus Restriction can be viewed as one pos- 
sible strategic generalization of the Simplex Method. Not only is this an interesting 
fact in its own right, but it also permits us to draw some inferences-as we shall see 
in the discussion below-concerning how best to exercise the options of Restriction. 

Step 1. The selection of the initial S should be guided by two objectives: to make the 
corresponding restricted problem easy to solve by comparison with the given problem, 
and to utilize any prior knowledge that may be available concerning which of the gt 

constraints are likely to hold with equality at an optimal solution. In the Simplex 
Method, for example, the initial choice of S implies that the restricted problem is 
trivial since it has a unique feasible solution; at every subsequent execution of Step 2, 
the restricted problem remains nearly trivial with essentially only one free variable 
(the entering basic variable). Useful prior knowledge is often available if the given 
problem is amenable to physical or mathematical insight or if a variant has been 
solved previously. 

Step 2. How to solve the restricted problem for (x8, 82) at Step 2 depends, of course, 
on its structure. Hopefully, enough constraints will be restricted to equality to make it 
vastly simpler than the original problem. In any event, it is advisable to take advan- 
tage of the fact that a sequence of restricted problems must be solved as the Re- 
striction strategy is carried out. Except for the first execution of Step 2, then, what 
is required is a solution recovery technique that effectively utilizes the previous solu- 
tion. The pivot operation performs precisely this function in the Simplex Method, 
and serves as an ideal to be approached in nonlinear applications of Restriction. 

It is worth mentioning that many solution (or solution recovery) techniques that 
could be used for the restricted problem automatically yield A' as well as x8. When this 
is not the case, one may find /S once xS is known by solving a linear problem if f and 
the constraint functions defining X are differentiable, since under these conditions the 
Kuhn-Tucker optimality conditions for (3.6) in differential form become linear in g. 

Step 3. Perhaps the most conspicuous criterion for choosing V at Step 3 is to let it 
be the index of the constraint corresponding to the most negative /ttI. One rationale 
for this criterion is as follows. Suppose that g8 is unique. It can then be shown (see 
[Geoffrion 69] or [Rockafellar 68]) that the optimal value of the restricted problem is 
differentiable as a function of perturbations about 0 of the right-hand side of the gi 
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constraints, and that -, is is the partial derivative of the optimal value with respect 
to such perturbations of the ith constraint. Thus the most negative g is identifies the 
constraint in S whose release will lead to the greatest initial rate of improvement in 
the value of f as this constraint is permitted to deviate positively from strict equality. 
It can be argued that gs is likely to be unique, but if we drop this supposition, then 
-.ui still provides an upper bound on the initial rate of improvement even though dif- 
ferentiability no longer holds. 

This most-negative-multiplier criterion is precisely the usual criterion used by the 
Simplex Method in its version of Step 3 to select the entering basic variable, but it is by 
no means the only criterion used. The extensive computational experience presently 
available with different criteria used in the Simplex Method may permit some in- 
ferences to be drawn concerning the use of the analogous criteria in the nonlinear case. 
It has been observed [Wolfe and Cutler 63], for example, that the most-negative- 
multiplier criterion typically leads to a number of iterations equal to about twice the 
number of constraints, and that other plausible criteria can be expected to be con- 
sistently better by no more than a factor of two or so.18 Lest it be thought that V must 
necessarily be a singleton, we note that we may interpret Wolfe and Cutler to have 
also observed [ibid., p. 190] that choosing V to consist of the five most negative multi- 
pliers reduced the number of iterations by a factor of two as compared with the single- 
most-negative-multiplier choice."9 Of course, this increases the time required to solve 
each restricted problem. Experience such as this should at least be a source of hypothe- 
ses to be examined in nonlinear applications of Restriction. 

Mechanizing the "Pricing" Operation. Each iteration of Restriction requires deter- 
mining whether there exists a negative multiplier and, if so, at least one must be 
found. In the ordinary Simplex Method, which as we have indicated can be viewed as 
a particular instance of Restriction, this was originally done enumeratively by scanning 
the row of reduced costs for an entry of the "wrong" sign. To deal with large numbers 
of variables, however, it is desirable whenever possible to replace this enumeration by 
an algorithm that exploits the structure of the problem. This is referred to as mecha- 
nized pricing. 

Mechanized pricing is widely practiced in the context of linear programming, where 
it is often referred to as column-generation. Since the pioneering paper [Ford and 
Fulkerson 58], many authors have shown how pricing could be mechanized by means 
of subsidiary network flow algorithms, dynamic programming, integer programming, 
and even linear programming. See the references of part B of Table 1, [Balinski 64], 
and [Gomory 63]. It will suffice to mention here but one specific illustration: the 
cutting-stock problem as treated by [Gilmore and Gomory 61]. See also ?4.3. 

Cutting-Stock Problem. A simple version of Gilmore and Gomory's cutting-stock 
problem, without the integrality requirement on x, is 

(3.7) Minimizex,o Ejxj s.t. EjZaiaxj 2 ri, i = 1, M** , 

18 An example of another plausible criterion is this: select V to be the index of the constraint 
which, when deleted from S, will result in the greatest possible improvement in the optimal value 
of the restricted problem. Of course, this criterion is likely to be prohibitively expensive compu- 
tationally in the nonlinear case. 

19 This is known as multiple pricing, a feature used in most production linear programming 
systems designed for large-scale problems. See, for example, [Orchard-Hays 68, ?6.1]. 
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wvhere aij is the number of pieces of length li produced when the cutting knives are 
set in the jth pattern, ri is the minimum number of required pieces of length li, and 
xj is the number of times a bar of stock is cut according to pattern j. The number of 
variables is very large because of the great variety of ways a bar of stock can be cut. 
It is easy to see that each column of the matrix A is of the form (yi, * , ym)t, where 
y is a vector of nonnegative integers satisfying S=- ljyj < X (N is the length of a bar of 
stock); and conversely, every such vector corresponds to some column (assuming that 
all possible patterns are allowed). When Restriction is applied to (3.7) in the form 
of the Simplex Method, it follows that the problem of determining the most negative 
multiplier can be expressed as the subsidiary optimization problem 

(3.8) Minimizez,,o 1 - uty s.t. E,=i liyi < X, y integer, 

where u is a known vector of the current "simplex multipliers." If slack variables are 
given priority over structural variables in determining entering basic variables (cf. 
?4.3), then u can be assumed nonnegative and (3.8) is a problem of the well known 
"knapsack" variety, for which very efficient solution techniques are available. See 
[Gilmore and Gomory 61] for full details. 

3.3 Relaxation 

Whereas Restriction is a solution strategy principally useful for problems with a 
large number of variables, the complementary strategy of Relaxation is primarily use- 
ful for problems with a large number of inequality constraints, some of which may be 
only implicitly available. Such problems occur, for example, as a result of Outer Line- 
arization.20 One of the earliest uses of Relaxation was in [Dantzig, Fulkerson, and 
Johnson 54, 59], and since that time this strategy has appeared in one guise or another 
in the works of numerous authors.2' We discuss [Kelley 60] at the end of this section, 
and [Benders 62] in ?4.1. 

The essential idea of Relaxation is this: solve a relaxed version of the given problem 
ignoring some of the inequality constraints; if the resulting solution does not satisfy 
all of the ignored constraints, then generate and include one or more violated con- 
straints in the relaxed problem and solve it again; continue in this fashion until a 
relaxed problem solution satisfies all of the ignored constraints, at which point an 
optimal solution of the given problem has been found. An important refinement in- 
volves dropping amply satisfied constraints from the relaxed problem when this does 
not destroy the inherent finiteness of the procedure. We give a formal statement of 
Relaxation (with the refinement) below. 

Relaxation and Restriction are complementary strategies in a very strong sense of 
the word. In linear programming, for example, whereas a natural specialization of 
Restriction is equivalent to the ordinary Simplex Method, it is also true [Geoffrion 
68a] that a similar specialization of Relaxation is equivalent to Lemke's Dual Method. 

20 Relaxation can also be useful for dealing with large numbers of nonnegative variables; when 
a constraint such as xi > 0 is relaxed the variable x; can often be substituted out of the problem 
entirely ([Ritter 67c], [Webber and White 68]). 

21 Relaxation without problem manipulation is used in Dantzig 55a, Sec. 3; Stone 58; Thomp- 
son, Tonge and Zionts 66; Ritter 67c; Grigoriadis and Ritter 69, Robers and Ben-Israel 69, ?3. 
The following papers all use the pattern Outer Linearization/Relaxation: Cheney and Goldstein 
59; Kelley 60; Dantzig and Madansky 61, p. 174; Parikh 67; Veinott 67. The references of part A 
of Table 2 all tuse the pattern Projection, Outer Linearization/Relaxation. See also the second 
footnote in ?1.2. 
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It follows, very significantly, that Restriction (Relaxation) applied to a linear program 
essentially corresponds to Relaxation (Restriction) applied to the dual linear program. In 
fact [ibid.], the same assertion holds for quite general convex programs as well. This com- 
plementarity makes it possible to translate most statements about Restriction into 
statements about Relaxation, and conversely. 

Since we have already given a relatively detailed discussion of Restriction, a some- 
what abbreviated discussion of Relaxation will suffice. See [ibid.] for a more complete 
discussion. 

Formal Statement. Let f, g1, g. * *,g be concave functions on a nonempty convex 
set X C R'. The concave program 

(3.9) Maximize.,x f(x) s.t. gi(x) 2 0, i=1, *., m 

is solved by solving a sequence of relaxed problems of the form 

(3.10) MaximizexEx f(x) s.t. gi(X) 2 0, i E S, 

where S is a subset of { 1, * * *, m}. Assume that (3.10) admits an optimal solution x8 
whenever it admits a feasible solution and its maximand is bounded above on the 
feasible region, and assume further that an initial subset of constraint indices is known 
such that (3.10) has a finite optimal solution. (This assumption can be enforced, if 
necessary, by enforcing continuity of all functions and compactness of X.) 

Under these assumptions, it is not difficult to show that the following strategy is 
well defined and terminates in a finite number of steps with either an optimal solution 
of the given problem (3.9) or an indication that none exists; moreover, in the first case 
a nonincreasing sequence (f(xs)) of upper bounds on the optimal value of (3.9) is ob- 
tained and the first solution of (3.10) that is feasible in (3.9) is also optimal. This ver- 
sion of Relaxation deletes amply satisfied constraints from S so long as ((x')) is de- 
creasing. 

The Relaxation Strategy 

Step 1 Put f oo and S equal to any subset of indices such that the corresponding 
relaxed problem (3.10) has a finite optimal solution. 

Step 2 Solve (3.10) for an optimal solution xs if one exists; if none exists (i.e., if the 
relaxed problem is infeasible), then terminate (the given problem is infeasible). 
If gi(xs) ? 0 for all i 1 S, then terminate (x' is optimal in the given problem); 
otherwise, go on to Step 3. 

Step 3 Put V equal to any subset of constraint indices that includes at least one con- 
straint such that gj(x8) < 0. If f (x8) < f, replace f by f(x8) and S by E U V, 
where E-{i E S:gi(x3) = 0}; otherwise (i.e., if f(x8) = f), replace S by 
S U V. Return to Step 2. 

Discussion 

As wvith Restriction, the analyst has considerable leeway concerning how he applies 
the Relaxation strategy. For instance, he can select the constraints that are to be 
candidates for Relaxation (gi, * **, gUrn) in any way he wishes; the rest comprise X. 
He is free to choose the initial S so as to allow an easy start, or to take advantage of 
prior knowledge concerning which of the constraints might be active at an optimal 
solution. He can choose the most effective solution recovery technique to reoptimize 
the successive relaxed problems. And, very importantly, he can choose the criterion 
by which V will be selected at Step 3 and the method by which the criterion will be 
implemented. 
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Probably the most natural criterion is to let V be the index of the most violated con- 
straint. This is the criterion most commonly employed in the Dual Method of linear 
programming, for example, although other criteria are possible. The complementarity 
between Relaxation and Restriction mentioned earlier enables us to interpret existing 
computational experience in linear programming so as to shed light on the merits and 
demerits of several alternative criteria. The discussion of Step 3 of Restriction should 
make further discussion of this point unnecessary. We should remark, however, that 
in some applications (e.g., [Dantzig, Fulkerson and Johnson 54], [Gomory 58], [Kelley 
60]) only one or a few violated constraints are accessible each time the relaxed prob- 
lem is solved, and it is therefore indicated that these be used regardless of whether 
they satisfy any particular criterion. In other applications a criterion such as "most 
violated constraint" is within the realm of attainability, and can be approached 
via a subsidiary linear program [Benders 62], network flow problem [Gomory and Hu 
62], or some other subsidiary optimization problem that is amenable to efficient solu- 
tion. This is the counterpart of mechanized pricing in Restriction. 

Restriction and Relaxation, opposites though they are to one another, are by no 
means incompatible. In fact it can be shown [Geoffrion 66 and 67] that both strategies 
can be used simultaneously. The reduced problems become still more manageable, 
but assurance of finite termination requires more intricate control. 

The Cutting-Plane Method. One important use of Relaxation occurs, as we have men- 
tioned, in connection with problems that have been outer-linearized. This will be 
illustrated in the simplest possible setting in terms of the problem 

(3.11) Minimize.?o ctx s.t. Ax < b, g(x) 0, 

where g is a convex function that is finite-valued on 

X-{x _ 0: Ax b}. 

If one manipulates (3.11) by invoking an arbitrarily fine outer-linearization of g 
and then applies the Relaxation strategy with the new approximating constraints as 
the candidates for being relaxed, the resulting procedure is that of [Kelley 60]. 

Let us assume for simplicity that g is differentiable on X.22 Then g has a linear sup- 
port g(x) + Vg(x)(x - .) at every point x in X, where Vg(x) is the gradient of g 
at x, and so (3.11) is equivalent to 

(3.12) Minimizex,x ctx s.t. g(x ) + Vg(t)(x - ( ) < 0, all x G X. 

The Relaxation strategy is the natural one for solving (3.12), since it avoids the 
need to determine in advance all of the linear supports of g. At each iteration, a re- 
laxed version of this problem with a finite number of approximating constraints is 
solved. The optimal solution I of the relaxed problem is feasible in (3.12) if and 
only if g(j) ? 0; if g(&) > 0, then evaluation of Vg(&) yields a violated constraint 
that must be appended to the current relaxed problem. Since each relaxed problem 
is a linear program that will be augmented by a violated constraint, it is natural to 
reoptimize it using postoptimality techniques based on the Dual Method for linear 
programming. 

It is easy to generalize this development to cover the case in which (3.11) has 
several (nonlinear) convex constraints and a convex minimand. 

22 The assumption of differentiability can he weakened, since it is only necessary for g to have 
a support at each point of X. And even this requirement can be weakened as implicitly suggested 
in the conclusion of ?2.3 if (3.11) is phrased in terms of the epigraph of g. 
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It should be pointed out that dropping amply satisfied constraints from the re- 
laxed problem-a feature incorporated in our statement of Relaxation-appears to be 
questionable in this context since (3.12) has an infinite number of constraints. See, 
however, the recent work [Eaves and Zangwill 69] and [Topkis 69] for conditions under 
which convergence to an optimal solution of (3.11) is nevertheless assured in the limit. 

We remark in passing that the approach of [Hartley and Hocking 63] for (3.11) 
can be viewed as Restriction applied to the dual of (3.12). Since Relaxation of (3.12) 
corresponds to Restriction of its dual, the two approaches are really equivalent. 

This content downloaded from 129.215.5.255 on Fri, 31 May 2013 09:45:03 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

	Article Contents
	p. 652
	p. 653
	p. 654
	p. 655
	p. 656
	p. 657
	p. 658
	p. 659
	p. 660
	p. 661
	p. 662
	p. 663
	p. 664
	p. 665
	p. 666
	p. 667
	p. 668
	p. 669
	p. 670
	p. 671
	p. 672
	p. 673
	p. 674
	p. 675

	Issue Table of Contents
	Management Science, Vol. 16, No. 11, Theory Series (Jul., 1970), pp. 651-771
	Volume Information [pp.  767 - 771]
	Front Matter
	Communication to the Editor
	A Note on Trauth and Woolsey's Integer Linear Programming Article [p.  651]

	Elements of Large-Scale Mathematical Programming: Part I: Concepts [pp.  652 - 675]
	Elements of Large Scale Mathematical Programming: Part II: Synthesis of Algorithms and Bibliography [pp.  676 - 691]
	An Analysis of Private and Public Sector Location Models [pp.  692 - 707]
	Dissection Methods for Solutions in Chance Constrained Programming Problems under Discrete Distributions [pp.  708 - 715]
	An Approximation of the Cost Function for Multi-Echelon Inventory Model [pp.  716 - 727]
	An Experimental Investigation and Comparative Evaluation of Production Line Balancing Techniques [pp.  728 - 746]
	Price-Production Decisions with Deterministic Demand [pp.  747 - 750]
	Optimal Sale of a Commodity Stockpile [pp.  751 - 758]
	Book Reviews
	untitled [pp.  759 - 760]
	untitled [pp.  760 - 761]
	untitled [p.  761]

	Precis
	Sufficiency Conditions for Constrained Optima [pp.  762 - 763]

	Back Matter [pp.  764 - 765]



