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Interior point methods for optimization have been around for more than 25 years now. Their presence
has shaken up the field of optimization. Interior point methods for linear and (convex) quadratic pro-
gramming display several features which make them particularly attractive for very large scale optimi-
zation. Among the most impressive of them are their low-degree polynomial worst-case complexity
and an unrivalled ability to deliver optimal solutions in an almost constant number of iterations which
depends very little, if at all, on the problem dimension. Interior point methods are competitive when
dealing with small problems of dimensions below one million constraints and variables and are beyond
competition when applied to large problems of dimensions going into millions of constraints and vari-
ables.

In this survey we will discuss several issues related to interior point methods including the proof of the
worst-case complexity result, the reasons for their amazingly fast practical convergence and the features
responsible for their ability to solve very large problems. The ever-growing sizes of optimization prob-
lems impose new requirements on optimization methods and software. In the final part of this paper
we will therefore address a redesign of interior point methods to allow them to work in a matrix-free
regime and to make them well-suited to solving even larger problems.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

Linear programs (LPs) have been at the centre of attention of the
optimization field since the 1940s. For several decades the simplex
algorithm [60,23] was the only method available to solve this
important class of optimization problems. Although in theory the
simplex method is a non-polynomial algorithm (in the worst-case
it might have to make a very large number of steps which depends
exponentially on the problem dimension), in practice it has proved
to be a very efficient and reliable method. By its design, the sim-
plex method visits the vertices of the polytope defined by the con-
straints and, because their number may be astronomical, the
method is exposed to a danger of having to visit many of them be-
fore reaching an optimal one. No polynomial simplex-type pivoting
algorithm is known to date and it is hard to believe that one will
ever be found although researchers have not lost hope, and con-
tinue their search for one [99].

The first polynomial algorithm for LP was developed by Khachi-
yan [66]. His ellipsoid algorithm constructs a series of ellipsoids in-
scribed into the feasible set. The centres of these ellipsoids form a
sequence of points convergent to an optimal solution of the LP. The
construction of ellipsoids provides a guarantee that steady pro-
ll rights reserved.
gress towards optimality can be made from one iteration to an-
other. The development of the ellipsoid method made a huge
impact on the theory of linear programming but the method has
never become a competitive alternative to the simplex method be-
cause the per-iteration cost of the linear algebra operations to up-
date the ellipsoids is too high [41].

Karmarkar’s projective LP algorithm [61] could be interpreted as
a refinement of the ellipsoid method. Instead of inscribing an ellip-
soid into the ill-conditioned corner of the feasible polytope, Karmar-
kar’s algorithm employs projective geometry to transform this
‘‘corner’’ into a regular well-conditioned simplex polytope, inscribes
a ball into it, and exploits the fact that optimization on a ball is a triv-
ial operation. Additionally, Karmarkar’s method uses a notion of a
potential function (a sort of merit function) to guarantee a steady
reduction of a distance to optimality at each iteration. Although a
single iteration of Karmarkar’s method is expensive (it requires a
projection operation to be applied, and this operation changes at
each iteration), optimality is reached after a relatively small number
of iterations which makes the algorithm computationally attractive.

Karmarkar’s proof of the worst-case complexity result was
rather complicated. Its development was accompanied by claims
of unprecedented efficiency for the new method, which managed
to attract huge interest from the optimization community. The ef-
forts of numerous researchers soon led to improvements and clar-
ifications of the theory. Gill et al. [40] established an equivalence
between Karmarkar’s projective method and the projected Newton
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barrier method. This increased interest in the role of barrier func-
tions in the theory of interior point methods and has drawn the
community’s attention to numerous advantageous features of log-
arithmic barrier functions. (Interestingly, the use of a logarithmic
barrier method in the context of optimization had already been
proposed in 1955 by Frisch [37] and studied extensively by Fiacco
and McCormick [32] in the context of nonlinear optimization.)

It is broadly accepted today that an infeasible-primal–dual algo-
rithm is the most efficient interior point method. A number of
attractive features of this method follow from the fact that a loga-
rithmic barrier method is applied to the primal and the dual prob-
lems at the same time. This was first suggested by Megiddo [77].
Independently, Kojima et al. [69] developed the theoretical back-
ground of this method and gave the first complexity results. Fur-
ther progress was made by Kojima et al. [68] who provided good
theoretical results for the primal–dual algorithm with extra safe-
guards and those could be translated into computational practice.
The interpretation of interior point methods as algorithms which
follow a path of centres (central trajectory) on their way to an opti-
mal solution was gaining wide acceptance [47]. In the late 80s,
Mehrotra and independently Lustig, Marsten, Shanno and their col-
laborators made impressive progress in the implementation of
interior point methods and provided also a better understanding
of the crucial role played by the logarithmic barrier functions in
the theory [76]. By the early 90s sufficient evidence was already
gathered to justify claims of the spectacular efficiency of IPMs for
very large scale linear programming [78,73,74]. A new class of
optimization methods able to compete with the simplex method
was quickly gaining wide appreciation.

It is worth mentioning at this point that the presence of interior
point methods have put considerable pressure on developers of
commercial simplex implementations and have led to impressive
developments of the simplex method over the last 25 years
[13,33,54,75,98]. Both methods are widely used nowadays and
continue to compete with each other. Although the large size of
the problem generally seems to favour interior point methods, it
is not always possible to predict the winner on a particular class
of problems. For example, the sparsity structure of the problem
determines the cost of linear algebra operations and therefore
determines the efficiency of a given algorithm leading sometimes
to astonishing results by significantly favouring one method over
the other. The simplex method easily takes advantage of any hy-
per-sparsity in a problem [54] but its sequential nature makes it
difficult to parallelise [53]. On the other hand, interior point meth-
ods are able to exploit any block-matrix structure in the linear
algebra operations and therefore significant speed-ups can be
achieved by massive parallelisation [44].

Having applied a nonlinear programming technique (based on
the use of logarithmic barrier function) to solve the linear opti-
mization problem was the key reason of IPMs success. Soon after
the major role played by the logarithmic barrier function [40]
had been understood, a similar methodology was applied to
solve quadratic [103] and nonlinear optimization problems
[104] and indeed, as it was nicely pointed out by Forsgren
et al. [34] ‘‘an especially appealing aspect of the interior-point
revolution is its spirit of unification, which has brought together
areas of optimization that for many years were treated as firmly
disjoint’’.

Nesterov and Nemirovskii [85] provided an insightful explana-
tion why the logarithmic function is such a well-suited barrier
function. Its advantage results from the self-concordance property
which makes the logarithmic function particularly attractive to
be applied in an optimization technique based on the Newton
method. The theory of self-concordant barriers [85] expanded fur-
ther the area of IPM applications and covered a semidefinite pro-
gramming and more generally a conic optimization which also
includes another important class of the second-order cone pro-
gramming. In this survey we will focus on the linear and convex
quadratic programming problems, the classes of optimization
problems which are by far the most frequently used in various
real-life applications. The readers interested in nonlinear, semidef-
inite and second-order cone programming are referred to excellent
surveys of Forsgren et al. [34], Vandenberghe and Boyd [101], and
Lobo et al. [70], respectively.

In this paper we will (gently) guide the reader through major is-
sues related to the fascinating theory and implementation of IPMs.
The survey is organised as follows. In Section 2 we will introduce
the quadratic optimization problem, define the notation used in
the paper and discuss in detail an essential difference between the
simplex and interior point method, namely the way in which these
methods deal with the complementarity condition. In Section 3 we
will perform the worst-case analysis of a particular interior point
algorithm for convex quadratic programming. We will analyse the
feasible algorithm operating in a small neighbourhood of the central
path induced by the 2-norm. Our proof will follow a scheme set for
linear programming in an excellent textbook on IPMs by Wright
[105] and will generalize it to the case of quadratic programming.
In Section 4 we will guide the reader through the issues of imple-
mentation of IPMs and we will discuss several techniques which
are responsible for the impressive practical efficiency of these meth-
ods. In Section 5 we will discuss the issues of linear algebra applied in
IPMs including direct and iterative methods for symmetric systems
of linear equations. In Section 6 we will discuss existing and poten-
tial techniques which may further accelerate the performance of
interior point methods. In particular we will discuss the recently
developed framework in which IPMs can work in a matrix-free re-
gime, which makes them eligible for solving even larger scale prob-
lems of the future. We will demonstrate the approach when applied
to two otherwise intractable classes of optimization problems: lin-
ear relaxations of notoriously difficult quadratic assignment prob-
lems and challenging linear programs arising in quantum
mechanics. Finally, in Section 7 we will give our conclusions and
comment on possible further developments of interior point
methods.

2. Interior point methods: background

We are concerned in this paper with the theory and implemen-
tation of interior point methods for solving linear and convex qua-
dratic programming problems. We consider the following general
primal–dual pair of convex quadratic programming (QP) problems

Primal Dual
min cT xþ 1

2 xT Qx; max bT y� 1
2 xT Qx;

s:t: Ax ¼ b; s:t: AT yþ s� Qx ¼ c;

x P 0; y free; s P 0;

ð1Þ

where A 2 Rm�n has full row rank m 6 n;Q 2 Rn�n is a positive
semidefinite matrix, x; s; c 2 Rn and y; b 2 Rm. In a special case of
Q = 0 these problems become the primal–dual pair of linear pro-
gramming (LP) problems.

Using Lagrangian duality theory [11] the first order optimality
conditions for these problems can be written as:

Ax ¼ b;

AT yþ s� Qx ¼ c;

XSe ¼ 0;
ðx; sÞP 0;

ð2Þ

where X and S are diagonal matrices in Rn�n with elements of vec-
tors x and s spread across the diagonal, respectively and e 2 Rn is
the vector of ones. The third equation XSe = 0, called the
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complementarity condition, can be rewritten as xjsj = 0,
"j 2 {1,2, . . . ,n} and implies that at least one of the two variables
xj and sj has to be zero at the optimum. The way in which comple-
mentarity condition is dealt with determines the type of optimiza-
tion algorithms.

Active set methods and their prominent example, the simplex
method for linear programming, make an intelligent guess that
either xj = 0 or sj = 0. They choose a subset of indices
j 2 B � f1;2; . . . ;ng such that xj is allowed to be nonzero and force
the corresponding sj = 0, while the remaining indices
j 2 N ¼ f1;2; . . . ;ng n B force xj = 0 and allow sj to take nonzero
values.

Interior point methods perturb the complementarity condition
and replace xjsj = 0 with xjsj = l, where the parameter l is driven
to zero. This removes the need to ‘‘guess’’ the partitioning into ac-
tive and inactive inequality constraints: the algorithm forces a
reduction of l; the partition of vectors x and s into zero and non-
zero elements is gradually revealed as the algorithm progresses.

The way of handling the complementarity condition has major
consequences for the implementation of the method, its theoretical
worst-case complexity and its practical efficiency.

The simplex method allows only one index to be swapped be-
tween B and N at each iteration. (In the more general context of
active set methods the index of only one variable and/or active
constraint can be exchanged at each iteration.) The linear algebra
techniques used by the simplex method allow us to eliminate the
non-basic part of the constraint matrix and to express all opera-
tions in terms of the basis matrix B, a submatrix of A induced by
columns from set B. Swapping one index between B and N at each
iteration means that only one column of B needs to be replaced and
this is exploited in a very efficient updating of the basis inverse
representation. Consequently the cost of a single iteration in the
simplex method is usually very low. However, the choice of which
indices to swap relies on local information associated with the cur-
rent ðB;NÞ partition and one cannot control the number of such
replacements required before the optimal partition is found. Klee
and Minty [67] constructed a problem of dimension n, the solution
of which requires 2n iterations of the simplex method, which dem-
onstrates that the simplex method is not a polynomial algorithm. It
has to be said, however, that it is only a theoretical drawback and
in practice it is rather exceptional for the simplex method to per-
form more than m + n iterations on its way to an optimal solution
[13,33,54,75,98].

Interior point methods, on the other hand, force the conver-
gence to optimality by gradually reducing the perturbation l in
the approximate complementarity condition and eventually driv-
ing it arbitrarily close to zero. Therefore, the decision which of
the two variables xj or sj should be zero is delayed (but certainly
not left to ‘‘guessing’’). All variables (x,y,s) change at each iteration
and the linear algebra operations which are required to update
them have to involve the complete matrix A. This makes a single
iteration of the interior point method significantly more expensive
than that of the simplex method. The theory of IPMs focuses on cle-
ver ways of reducing l to zero and gradually revealing the optimal
partition. Normally, IPMs terminate when an e-accurate solution
(l 6 e) is found. The best known to date IPM algorithm for linear
and quadratic programming finds the e-accurate solution of an
LP or a convex QP problem in O

ffiffiffi
n
p

lnð1=eÞ
� �

iterations [90].
According to the general theory [83, Ch. 4] the term

ffiffiffi
n
p

is the best
one can expect for an IPM using a self-concordant barrier function
such as the logarithmic barrier.

In practice IPMs perform much better than that and converge in
a number of iterations which is almost a constant, independent of
the problem dimension [22].

Interior point methods for optimization exploit the following
three tools:
� they use logarithmic barrier functions to ‘‘replace’’ the inequal-
ity constraints,
� they apply duality theory to replacement problems involving

barriers to derive the first order optimality conditions which
take the form of a system of nonlinear equations, and
� they apply the Newton method to solve this system of nonlinear

equations.

Rather than explicitly forcing a nonnegativity constraint xj P 0
in the IPM framework a logarithmic barrier term �l lnxj is added
to the objective of the optimization problem. By replacing all non-
negativity constraints in the primal problem (1) we obtain the bar-
rier QP subproblem

min cT xþ 1
2

xT Qx� l
Xn

j¼1

ln xj s:t: Ax ¼ b; ð3Þ

The parameter l controls the relation between the barrier term and
the original QP objective. Clearly the smaller the barrier parameter
l the less important influence the barrier term becomes and there-
fore more attention is paid to the QP objective. The optimization
starts with a large value of l, which corresponds to ignoring the ori-
ginal objective and keeping the solution x in the interior of the po-
sitive orthant, that is, preventing any of the components xj from
approaching their boundary value of zero. Next the parameter l
is gradually reduced hence the logarithmic barrier is weakened
allowing the algorithm to minimize the original objective and ulti-
mately to approach an optimal solution in which some of the com-
ponents xj may be zero. Associated with (3) is the Lagrangian

Lðx; yÞ ¼ cT xþ 1
2

xT Qx� l
Xn

j¼1

ln xj � yTðAx� bÞ; ð4Þ

and the first order optimality conditions become

ryLðx; yÞ ¼ Ax� b ¼ 0;

rxLðx; yÞ ¼ c � AT y� lX�1eþ Qx ¼ 0:
ð5Þ

By introducing a new variable s = lX�1e (i.e. XSe = le) the first order
optimality conditions become

Ax ¼ b;

AT yþ s� Qx ¼ c;

XSe ¼ le;
ðx; sÞP 0:

ð6Þ

It is worth comparing (2) and (6) and noticing that the only differ-
ence is a perturbation of the complementarity constraint. A conse-
quence of the presence of the logarithmic barrier is that all
complementarity products take the same value l. It is easy to show
(we will do it in Lemma 3.1 below) that if (x,y,s) is primal and dual
feasible then the duality gap in the barrier subproblem is equal to
the complementarity gap xTs = nl, which immediately reveals that
the barrier term l controls the distance to optimality.

The theory of IPMs focuses on a choice of a suitable sequence
{lk}. Large values of l at the beginning of the optimization process
promote centrality, that is, prevent components of x and s from
getting too small. The reduction of l moves the balance from
centrality to optimality and eventually allows the algorithm to
approach an optimal solution which may be (and in the LP case
it always is) at the boundary of the feasible region. For any l > 0,
system (6) has a unique solution (x(l),y(l),s(l)), x(l) > 0, s(l) > 0
which is called a l-centre. A family of these solutions for all posi-
tive values of l determines a (continuous) path {(x(l),y(l),s(l)) :
l > 0} which is called the primal–dual central path or central
trajectory.

The first two equations in (6) which correspond to primal and
dual feasibility conditions in (1) are linear and only the third
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equation which corresponds to the perturbed complementarity
condition is (mildly) nonlinear. Interior point algorithms do not
have to solve this system of nonlinear equations to a high degree
of accuracy. Recall that (6) is only an approximation of (2) corre-
sponding to a specific choice of the barrier parameter l and the
barrier term will have to be reduced to force convergence. IPMs ap-
ply the Newton method to solve (6). To be more precise, IPMs com-
pute the Newton direction and make one step in this direction
before reducing the barrier parameter l. The Newton direction
(Dx,Dy,Ds) is computed by solving the following system of linear
equations:

A 0 0
�Q AT In

S 0 X

2
64

3
75 � Dx

Dy
Ds

2
64

3
75 ¼ np

nd

nl

2
64

3
75 ¼ b� Ax

c þ Qx� AT y� s

rle� XSe

2
64

3
75; ð7Þ

where In denotes the identity matrix of dimension n.
It is worth having a closer look at a particular form of the third

row of the Jacobian matrix on the left hand side of the Newton sys-
tem (7). Due to ‘‘symmetry’’ of the perturbed complementarity
condition XSe = le this equation becomes

SDxþ XDs ¼ nl:

To guarantee progress in reducing the complementarity gap xTs,
interior point algorithms attempt to reduce the barrier term from
its current value l to a new one rl where r 2 (0,1) and therefore
by using eTe = n and xTs = nl the third equation in (7) implies

sTDxþ xTDs ¼ rleT e� xT s ¼ ðr� 1ÞxT s

and provides the necessary term to estimate the progress of the
algorithm. Indeed, when a damped Newton step is made in the
direction (Dx,Dy,Ds), with stepsize a possibly smaller that 1, the
complementarity gap at the new point ð�x; �y;�sÞ ¼ ðx; y; sÞþ
aðDx;Dy;DsÞ becomes

�xT�s ¼ ðxþ aDxÞTðsþ aDsÞ ¼ xT sþ aðsTDxþ xTDsÞ þ a2DxTDs

¼ ð1� að1� rÞÞxT sþ a2DxTDs ð8Þ

and if the second order term DxTDs can be kept small the new gap
�xT�s is smaller than the old one xTs. It is easier to derive the polyno-
mial worst-case complexity result for the feasible interior point
algorithm. Therefore we will assume that all primal–dual iterates
belong to F 0 ¼ fðx; y; sÞjAx ¼ b;AT yþ s� Qx ¼ c; ðx; sÞ > 0g. The
proof of the complexity result requires swift control of the comple-
mentarity product xTs and keeping the second order error term
DxTDs small. This is achieved by containing the iterates to a small
vicinity of the central path, namely by guaranteeing that the error
in equation XSe = le is small. The error is measured by some norm
of the residual of this equation kXSe � lek. We follow [105] and use
the Euclidean norm in this context hence the following neighbour-
hood of the central path is defined:

N2ðhÞ ¼ fðx; y; sÞ 2 F 0jkXSe� lek 6 hlg; ð9Þ

where h 2 (0,1) is an arbitrary parameter and the barrier term is
equal to the average complementarity product l = xTs/n. Such a def-
inition of the neighbourhood of the central path implies that the
size of the neighbourhood is decreasing as long as the central path
approaches an optimal solution (as long as l approaches zero). The
need for the iterates to stay in the vicinity of the central path is a
source of an alternative name for IPMs as path-following methods:
indeed, these algorithms follow the central path on their way to
optimality [47].

We summarize this section by giving a general algorithm of the
infeasible path-following method for convex quadratic
programming.
INFEASIBLE PATH-FOLLOWING METHOD FOR QUADRATIC PROGRAMMING

Parameters
a0 = 0.99 a fraction-to-the-boundary stepsize factor;
r 2 (0,1) barrier reduction parameter;
ep, ed, eo primal feasibility, dual feasibility and optimality
tolerances:

IPM stops when
nk

pk k
1þkbk 6 ep;

nk
dk k

1þkck 6 ed and
ðxkÞT sk=n

1þjcT xkþ1=2ðxkÞT Qxk j
6 eo.

Initialize IPM
iteration counter k = 0;
primal–dual point x0 > 0, y0 = 0, s0 > 0;
barrier parameter l0 = (x0)Ts0/n;

primal and dual infeasibilities n0
p ¼ b� Ax0 and

n0
d ¼ c � AT y0 � s0 þ Qx0.

Interior Point Method

while
nk

pk k
1þkbk > ep or

nk
dk k

1þkck > ed or ðxkÞT sk=n
1þjcT xkþ1=2ðxkÞT Qxk j

> eo

� �
do

Update (reduce) the barrier lk+1 = rlk;
Solve the KKT system (7): find the primal–dual Newton

direction (Dx,Dy,Ds).
Find aP = max{a:xk + aDx P 0} and

aD = max{a:sk + aDs P 0};
Set aP:¼a0aP and aD :¼a0aD;
Make step

xk+1 = xk + aPDx;
yk+1 = yk + aDDy;
sk+1 = sk + aDDs.

Compute the infeasibilities: nkþ1
p ¼ b� Axkþ1 and

nkþ1
d ¼ c � AT ykþ1 � skþ1 þ Qxkþ1;
Update the iteration counter: k:¼k + 1.

end-while

In the next section we will prove that interior point algorithm
operating in the N2(h) neighbourhood applied to a convex QP con-
verges to an e-accurate solution in O

ffiffiffi
n
p

lnð1=eÞ
� �

iterations. This
variant is known in the literature as the short-step path-following
algorithm.

3. Polynomial complexity result

Our proof will follow a general scheme set in an excellent text-
book on IPMs by Wright [105]. In particular, our proofs of Lemmas
3.3, 3.5, 3.6 and Theorem 3.1 are taken from Lemmas 5.3, 5.4 and
Theorem 3.2 in [105]. However, we deal with an IPM for quadratic
programming and this requires care to be taken of some extra
terms which were not present in Wright’s proof for the linear pro-
gramming case. We will extensively exploit the fact that all iterates
belong to the N2(h) neighbourhood (9) of the central path. There-
fore all iterates are strictly primal–dual feasible which implies that
the right hand side vector in the linear system defining the Newton
direction (7) takes the form (0,0,r le � XSe).

Slow but systematic reduction of the complementarity gap (and
duality gap) is achieved by imposing a decrease of the barrier term
in each iteration. A marginal per-iteration reduction of l is enough
to deliver a polynomial complexity for the algorithm. We ask for
lk+1 = rlk, where r ¼ 1� b=

ffiffiffi
n
p

for some b 2 (0,1) hence r is
barely smaller than 1. We will make an exception in a small para-
graph below and use the letter e to denote the Euler number (the
base of natural logarithm). Everywhere else in the paper e will
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always denote a vector of ones of appropriate dimension. Using the
observation that if a strictly positive sequence {un} converges to
zero then the following sequence fð1þ unÞ1=ung converges to the
Euler number e, we deduce that after a number of iterations of or-
der

ffiffiffi
n
p

the achieved reduction of complementarity gap becomes

lk

l0 ¼ 1� b=
ffiffiffi
n
p� � ffiffinp � e�b;

and after C �
ffiffiffi
n
p

iterations, the reduction achieves e� Cb. Therefore,
for a sufficiently large constant C the complementarity gap can be-
come arbitrarily small. In other words, after a number of iterations
proportional to

ffiffiffi
n
p

the algorithm gets arbitrarily close to a solution.
In terms of complexity theory the algorithm converges in Oð

ffiffiffi
n
p
Þ

iterations.
First, we need to prove a series of technical results.

Lemma 3.1. If (x,y, s) 2 N2(h) then the duality gap is equal to the
complementarity gap, i.e.

cT xþ 1
2

xT Qx� bT y� 1
2

xT Qx
� �

¼ xT s: ð10Þ
Proof. Any point in N2(h) is primal and dual feasible hence by
substituting Q x = ATy + s � c and using Ax = b we get

cT xþ 1
2

xT Qx� bT y� 1
2

xT Qx
� �

¼ cT x� bT yþ xT Qx ¼ xT s: �
Lemma 3.2. The Newton direction (Dx,Dy,Ds) defined by the equa-
tion system

A 0 0
�Q AT In

S 0 X

2
64

3
75 � Dx

Dy

Ds

2
64

3
75 ¼ 0

0
rle� XSe

2
64

3
75; ð11Þ

satisfies:

DxTDs ¼ DxT QDx P 0: ð12Þ
Proof. From the first two equations in (11) we get ADx = 0 and
Ds = QDx � ATDy hence

DxTDs ¼ DxTðQDx� ATDyÞ ¼ DxT QDx P 0;

where the last inequality follows from positive definiteness of
Q. h

The Newton method uses a local linearization of the comple-
mentarity condition. When a step in the Newton direction (Dx,Dy,
Ds) of (11) is made, the error in the approximation of complemen-
tarity products is determined by the second-order term which is a
product of Dx and Ds. A series of technical results in Lemmas 3.3,
3.4, 3.5, 3.6 will provide a bound on kDXDS ek.

Lemma 3.3. Let u and v be any two vectors in Rn such that uTv P 0.
Then

kUVek 6 2�3=2kuþ vk2
;

where U = diag{u1, . . . ,un}, V = diag{v1, . . . ,vn}.
Proof. Let us partition all products ujvj into positive and negative
ones: P ¼ fjjujv j P 0g and M¼ fjjujv j < 0g and observe that

0 6 uTv ¼
X
j2P

ujv j þ
X
j2M

ujv j ¼
X
j2P
jujv jj �

X
j2M
jujv jj:
We can now write

kUVek¼ðk½ujv j�j2Pk
2þk½ujv j�j2Mk

2Þ1=2
6 k½ujv j�j2Pk

2
1þk½ujv j�j2Mk

2
1

� �1=2

6 2k½ujv j�j2Pk
2
1

� �1=2
6

ffiffiffi
2
p
k½1

4
ðujþv jÞ2�j2Pk1¼2�3=2

X
j2P
ðujþv jÞ2

62�3=2
Xn

j¼1

ðujþv jÞ2¼2�3=2kuþvk2
;

which completes the proof. h
Lemma 3.4. If (x,y, s) 2 N2(h) for some h 2 (0,1), then
(1 � h)l 6 xjsj 6 (1 + h)l "j.

In other words, minj2{1, 2, . . . , n}xjsj P (1 � h) l and
maxj2{1, 2, . . . , n}xjsj 6 (1 + h)l.
Proof. Since kxk1 6 kxk, from the definition of the neighbourhood
(9) we conclude

kXSe� lek1 6 kXSe� lek 6 hl:

Hence

jxjsj � lj 6 hl 8j;

from which the result easily follows. h
Lemma 3.5. If (x,y, s) 2 N2(h) for some h 2 (0,1), then

kXSe� rlek2
6 h2l2 þ ð1� rÞ2l2n:
Proof. Observe first that eT(X S e � le) = xTs � leTe = nl � nl = 0.
Therefore

kXSe� rlek2 ¼ kðXSe� leÞ þ ð1� rÞlek2

¼ kXSe� lek2 þ 2ð1� rÞleTðXSe� leÞ þ ð1� rÞ2l2eT e

6 h2l2 þ ð1� rÞ2l2n: �:
Lemma 3.6. If (x,y, s) 2 N2(h) for some h 2 (0,1), then

kDXDSek 6 h2 þ nð1� rÞ2

23=2ð1� hÞ
l:
Proof. The third equation in the Newton system has the following
form:

SDxþ XDs ¼ �XSeþ rle:

Having multiplied it with (X S)�1/2, we obtain

X�1=2S1=2Dxþ X1=2S�1=2Ds ¼ ðXSÞ�1=2 �XSeþ rleð Þ:

By applying Lemma 3.3 for u = X�1/2S1/2Dx and v = X1/2S�1/2Ds (with
uTv P 0 from Lemma 3.2) we get

kDXDSe ¼ kðX�1=2S1=2DXÞðX1=2S�1=2DSÞek

6 2�3=2kX�1=2S1=2Dxþ X1=2S�1=2Dsk2

¼ 2�3=2kX�1=2S�1=2ð�XSeþ rleÞk2

¼ 2�3=2
Xn

j¼1

ð�xjsj þ rlÞ2

xjsj
6 2�3=2 kXSe� rlek2

min
j

xjsj

6
h2 þ nð1� rÞ2

23=2ð1� hÞ
l;
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where the expressions in the numerator and the denominator of the
last inequality come from Lemmas 3.5 and 3.4, respectively. h

Recall that the required reduction of the complementarity gap
satisfies r ¼ 1� b=

ffiffiffi
n
p

. Therefore n(1 � r)2 = b2 and by a choice of
sufficiently small constants, for example, h = 0.1 and b = 0.1 we
can easily guarantee that

h2 þ nð1� rÞ2

23=2ð1� hÞ
6

1
2
rh;

hence the bound obtained in Lemma 3.6 may be simplified to

kDXDSek 6 1
2
rhl: ð13Þ

The technical results proved so far will be used to show that if the
current iterate belongs to the N2(h) neighbourhood of the central
path and r ¼ 1� b=

ffiffiffi
n
p

(with h = 0.1 and b = 0.1) then a full Newton
step is feasible and the new iterate ð�x; �y;�sÞ ¼ ðx; y; sÞ þ ðDx;Dy;DsÞ
also belongs to the N2(h) neighbourhood of the central path. Actu-
ally, we will show an even stronger result that for any step
a 2 (0,1] in the Newton direction the new iterate

ðxðaÞ; yðaÞ; sðaÞÞ ¼ ðx; y; sÞ þ aðDx;Dy;DsÞ ð14Þ

is primal–dual feasible and belongs to the N2(h) neighbourhood.
Consider the third equation in the Newton system (11). The

summation of its components gives

eTðSDxþ XDsÞ ¼ sTDxþ xTDs ¼ �eT XSeþ rleT e ¼ �xT s � ð1� rÞ:

Using (8), observe that when a step a is made in the Newton direc-
tion the new complementarity gap becomes x(a)Ts(a) =
(1 � a(1 � r))xTs + a2DxTD s and therefore the corresponding aver-
age complementarity gap is

lðaÞ ¼ xðaÞT sðaÞ=n ¼ ð1� að1� rÞÞlþ a2DxTDs=n: ð15Þ

Writing the third equation in the Newton system for a single com-
ponent j 2 {1,2, . . . ,n} gives sjDxj + xjDsj = rl � xjsj hence

xjðaÞsjðaÞ � lðaÞ ¼ ðxj þ aDxjÞðsj þ aDsjÞ � lðaÞ
¼ xjsj þ aðsjDxj þ xjDsjÞ þ a2DxjDsj � lðaÞ
¼ ð1� aÞxjsj þ arlþ a2DxjDsj � ð1� aÞl� arl

� a2DxTDs=n

¼ ð1� aÞðxjsj � lÞ þ a2ðDxjDsj � DxTDs=nÞ:

Consequently, the proximity measure for point (x(a),y(a),s(a))
becomes

kXðaÞSðaÞe� lðaÞek 6 ð1� aÞkXSe� lek þ a2kDXDSe

� ðDxTDs=nÞek: ð16Þ
Lemma 3.7. Let (x,y, s) be the current iterate in N2(h) neighbourhood
and (Dx,Dy,Ds) be the Newton direction which solves equation
system (11). Set h = b = 0.1 and define the new iterate (14) after a step
a in this direction and the new average complementarity gap (15). For
any a 2 (0,1]

kXðaÞSðaÞe� lðaÞek 6 hlðaÞ: ð17Þ
Proof. Expanding the square and using eTe = n and (DXDS
e)Te = DxTDs we get

kDXDSe� ðDxTDs=nÞek2 ¼ kDXDSek2 � 1
n
ðDxTDsÞ2

6 kDXDSek2
: ð18Þ
Next, using (16), the definition of N2(h), and inequalities (18) and
(13) we write

kXðaÞSðaÞe� lðaÞek 6 ð1� aÞhlþ a2kDXDSek

6 ð1� aÞhlþ 1
2
a2rhl:

Since a 2 (0,1] implies 1
2 a2
6 a and Lemma 3.2 guarantees that

DxTDs P 0 we further write

kXðaÞSðaÞe� lðaÞek 6 ð1� aÞhlþ 1
2
a2rhl 6 hð1� að1� rÞÞl

6 h½ð1� að1� rÞÞlþ a2DxTDs=n� ¼ hlðaÞ;

which completes the proof. h

It is easy to prove that the Newton step in a feasible algorithm
preserves the feasibility of primal and dual equality constraints;
hence Lemma 3.7 guarantees that for any a 2 (0,1] the new iterate
(14) belongs to the N2(h) neighbourhood of the central path as well.
We will assume that the maximum stepsize a = 1 is chosen and full
Newton step is made. Therefore the new iterate is defined as
ð�x; �y;�sÞ ¼ ðx; y; sÞ þ ðDx;Dy;DsÞ. Setting a = 1 in (15) gives

�l ¼ rlþ DxTDs=n:

Using Cauchy–Schwartz inequality and inequality (13) we derive
the following bound:

DxTDs ¼ ðDXDSeÞT e 6 kDXDSekkek 6 1
2

hrl
ffiffiffi
n
p

;

hence

�l ¼ rlþ DxTDs=n 6 rlþ 1
2
ffiffiffi
n
p hrl 6 1þ h

2
ffiffiffi
n
p

� �
rl:

With our choice of r ¼ 1� b=
ffiffiffi
n
p

and h = b = 0.1 we deduce that
1þ h

2
ffiffi
n
p

� �
r 6 �r ¼ 1� b

2
ffiffi
n
p and

�l 6 1� b

2
ffiffiffi
n
p

� �
l ¼ �rl: ð19Þ

We are now ready to prove the complexity result.

Theorem 3.1. Given � > 0, suppose that a feasible starting point
(x0,y0, s0) 2 N2(0.1) satisfies (x0)Ts0 = nl0, where l0

6 1/�j, for some
positive constant j. Then there exists an index L with
L ¼ O

ffiffiffi
n
p

lnð1=�Þ
� �

such that ll
6 �, "l P L.
Proof. Let l be the iteration index. We have shown that llþ1
6 �rll.

Taking logarithms of both sides of this inequality we obtain
lnllþ1

6 ln �rþ ln ll. By repeatedly applying this formula for l = 0,
1, 2, . . . and using l0

6 1/�j, we get

lnll
6 l ln �rþ lnl0

6 l ln 1� b= 2
ffiffiffi
n
p� �� �

þ j lnð1=�Þ:

From a property of logarithmic function we have
ln 1� b= 2

ffiffiffi
n
p� �� �

6 �b= 2
ffiffiffi
n
p� �

. Thus

lnll
6 l �b= 2

ffiffiffi
n
p� �� �

þ j lnð1=�Þ:

To satisfy ll
6 �, we need:

l �b= 2
ffiffiffi
n
p� �� �

þ j lnð1=�Þ 6 ln �:

This inequality holds for any l P L, where

L ¼ 2
jþ 1

b
�
ffiffiffi
n
p
� lnð1=�Þ: � ð20Þ

This excellent worst-case complexity result of IPM for linear and
quadratic programming is unequalled in the field of optimization.
Two aspects of it are worth giving particular attention. Firstly, the
number of iterations is bounded by the square root of the problem
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dimension n and this needs to be compared with a number of iter-
ations that the simplex method might have to perform that is pos-
sibly exponential in n. The computational experience of [22] shows
the much better practical iteration complexity achieved by interior
point methods: it displays a logarithmic dependence on the prob-
lem dimension. Secondly, the complexity result (20) displays
merely a logarithmic dependence Oðlnð1=�ÞÞ on the required termi-
nation accuracy �. There has been recently growing interest in gra-
dient methods [84] which can only ensure Oð1=�Þ or Oð1=�2Þ terms
in their worst-case complexity results. Although they display fast
initial progress to optimality they become slow if a high accuracy
of solution (small �) is requested. Indeed, the terms Oð1=�Þ or
Oð1=�2Þ in the complexity result seem acceptable when a rough
approximation of solution is sought with � = 10�1 or � = 10�2 but
they become a liability when more accurate solutions are needed.
The superiority of IPMs becomes obvious when more accurate solu-
tions are requested.
4. From theory to implementation of IPMs

In order to keep the complexity proof easy (and accessible to
undergraduate students of optimization) we have made several
simplifying assumptions. Many of them may be dropped without
noticeably penalising the worst-case complexity result, however,
unfortunately they make the proofs more tedious. Modern imple-
mentations of IPMs further relax quite a few of these unnecessary
restrictions in the quest to make the algorithms as efficient as pos-
sible when used in practice.

4.1. Feasible vs. infeasible methods

In practice there is no need to impose feasibility of all iterates
and force the algorithm to stay in the primal–dual feasible set
F 0. For infeasible points all three terms in the right-hand side of
the equation defining Newton step (7) are nonzero. This does not
add any extra cost when solving the equation. By exploiting the
decomposition of the right-hand side

ðnp; nd; nlÞ ¼ ðnp;0;0Þ þ ð0; nd;0Þ þ ð0;0; nlÞ;

the direction D = (Dx,Dy,Ds) may be decomposed accordingly into
D = Dp + Dd + Dl, where Dp and Dd are terms responsible for restor-
ing primal and dual feasibility, respectively and Dl is the ‘‘optimiz-
ing’’ term. In the feasible algorithm Dp = Dd = 0 and D = Dl is
determined by Eq. (11).

It is easy to show that if a step a is made in the Newton direc-
tion in the infeasible algorithm then primal and dual infeasibilities
are reduced 1 � a times. Indeed, the first and second equations in
(6) are linear hence fast progress in reducing the residuals in these
equations is expected. In particular, if the full step is feasible and
a = 1 then all infeasibilities are absorbed in one step. In practice
it is common [22] that primal and dual feasibility is reached before
the optimality criteria is met. However, working with an infeasible
IPM usually requires damping the Newton step and accepting step-
sizes a which are significantly smaller than 1 (cf. Wright [105, Ch.
6]).

4.2. Aggressive optimization

The theory of the short-step feasible algorithm allows only a
small reduction in the complementarity gap at each iteration with
a factor r ¼ 1� b=

ffiffiffi
n
p

which is very close to 1. Practical algorithms
allow r to be any number from the interval (0,1] and indeed, the
author’s experience [22] shows that the average reduction of the
complementarity gap achieved in each IPM iteration raverage is usu-
ally in the interval (0.1,0.5). Using small values of r such as
r 2 (0.01,0.1) sets up aggressive targets on reducing the comple-
mentarity gap (and optimality gap) and usually causes the Newton
direction to point towards infeasible solutions. To preserve the
nonnegativity of the new iterates x and s the Newton step needs
to be damped in such case. A fraction-to-the-boundary rule is used
to preserve the strict positivity of x and s. This is achieved by using
a factor a0 close to but strictly smaller than 1 to reduce the stepsiz-
es in the primal and dual spaces.

4.3. Centrality

The theory requires the algorithm to keep all iterates in the
(very small) N2(h) neighbourhood of the central path. Practical
algorithms use a symmetric neighbourhood NSðcÞ ¼ fðx; y; sÞ 2
F 0jcl 6 xjsj 6 1=cl;8jg, where c 2 (0,1) or a so-called infinity
neighbourhood N�1ðcÞ ¼ fðx; y; sÞ 2 F 0jcl 6 xjsj;8jg in which only
too small complementarity products are forbidden. These wider
neighbourhoods leave the algorithm with more room to manoeu-
ver. However, it is no longer possible to prove that full Newton step
keeps the iterates in such neighbourhoods and therefore Newton
step needs to be damped (cf. Wright [105, Ch. 5]). Still the price
of having to accept the reduced stepsizes is worth paying because
the algorithms which use NS(c) or N�1(c) neighbourhoods perform
very well in practice.

4.4. Predictor–corrector and centrality corrector techniques

‘‘Centrality’’ is understood as keeping well-balanced the com-
plementarity products of all primal–dual iterates, and it plays an
essential role in both the theory and implementation of IPMs.
The theoretical developments in the previous section focused
on ensuring that xjsj � l, "j 2 {1,2, . . . ,n}. The target-following
approach developed by Jansen et al. [57] provides theoretical
background to a more relaxed treatment of centrality. In the
analysis presented in Section 3 the uniform distribution of prod-
ucts xjsj was achieved by containing (x,y,s) within the N2(h)
neighbourhood which required special care in the proof to be
devoted to the second-order term DXDSe (Lemma 3.6 and
inequality (13)). The implementation of IPM very cleverly ex-
ploits this error term.

Mehrotra’s predictor–corrector technique [78,73] splits the
computation of the Newton direction when solving system (7) into
two steps. In the first one, the right-hand side ignores centrality
and sets r = 0 which corresponds to attempting to reach comple-
mentarity and optimality in just one shot. The corresponding term
of direction Dpred = (Dx,Dy,Ds) focuses on optimization but ne-
glects centrality and it is used to predict how much progress in
reducing the complementarity gap and infeasibilities may be
achieved. This term of direction corresponds to the right-hand side
(np,nd,�X Se) in (7) and is called the predictor. If a full step in this
direction was made then the new complementarity product would
be

ðX þ DXÞðSþ DSÞe ¼ XSeþ ðSDX þ XDSÞeþ DXDSe ¼ DXDSe

and obviously could be very different from the required value rle.
Therefore, the corrector term Dcorr is computed by solving an equa-
tion similar to (11), but with the new right-hand side
(0,0,rle � DXpredDSprede) and eventually the predictor and correc-
tor terms are combined into a Newton direction

D ¼ Dpred þ Dcorr:

Centrality correctors [42,22] use targets which are less aggressive
(but hopefully easier to reach). Rather than attempting to take all
complementarity products towards the same value lnew = rlold,
centrality correctors aim at bringing them all to the interval
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[clnew,1/clnew] corresponding to the symmetric neighbourhood
NS(c) of the central path. Technically this is done by computing a
corrector term which solves an equation like (11), but for the
right-hand side equal to (0,0, t � DXpredDSprede), where t is the pro-
jection of the hypothetical complementarity product
(X + DXpred)(S + DSpred)e onto the hypercube [c lnewe,1/clnewe]. Un-
like Mehrotra’s predictor–corrector technique which allows only
one corrector term to be computed, centrality correctors technique
can be applied recursively, that is, a direction D = Dpred + Dcorr may
become a new predictor term and the process of computing the cor-
rector may be repeated. Extensive numerical tests [42,22] provided
evidence that the use of multiple centrality correctors leads to sig-
nificant reduction of the number of IPM iterations to reach optimal-
ity. Indeed, the method is widely used by academic IPM solvers
such as BPMPD, HOPDM, OOPS, OOQP, PCx, as well as commercial
IPM solvers such as Cplex, Mosek and Xpress. (It has also been used
with success in the context of semidefinite programming with IPMs
[52].)

IPMs are sensitive to the choice of an initial point. A general ad-
vice is to use a point which is sufficiently far away from the bound-
ary of the positive orthant, that is, for which x and s are ‘‘not too
small’’ [4,38,78]. For more recent attempts to design a good start-
ing point and the review of existing alternative approaches, the
reader should consult D’Apuzzo et al. [25] and the references
therein.

Finally, the practical efficiency of IPMs strongly depends on the
linear algebra techniques which are employed to solve the Newton
equation system: either (11) if we use a feasible algorithm of the-
oretical interest or (7) if we use a practical infeasible algorithm.
Multiple linear systems with different right-hand sides may have
to be solved when predictor–corrector technique [78,73] or cen-
trality correctors technique [42,22] are used. The linear algebra as-
pects of IPM implementation are addressed in the next section.

5. Linear algebra of IPMs

The Newton equation system—whether (11) if we use a feasible
algorithm or (7) if we use an infeasible algorithm—involves matri-
ces A and Q and two diagonal matrices X and S which change at
every iteration. The whole system has dimension
(2n + m) � (2n + m) and because of the presence of several zero
blocks and diagonal matrices, it displays an interesting and
exploitable sparsity pattern. Additionally, if an optimization prob-
lem is large then the matrices A and Q themselves are expected to
be sparse. The system (7) needs to be solved for at least one but
usually (when correctors are used) for several different values of
right-hand side vectors. It is a common approach to eliminate
Ds = X�1(nl � SDx) from (7) and get the following symmetric but
indefinite augmented system

�Q �H�1 AT

A 0

" #
Dx

Dy

	 

¼

f

d

	 

¼ nd � X�1nl

np

" #
; ð21Þ

where H = XS�1. If the elimination process is continued and
Dx = (Q + H�1)�1(ATDy � f) is substituted into the second equation
in (21) then the following symmetric and positive definite normal
equations system is obtained

AðQ þH�1Þ�1AT
� �

Dy ¼ g ¼ AðQ þH�1Þ�1f þ d: ð22Þ

The inversion of (Q + H�1) in this formulation is a highly question-
able operation because it is well-known [29] that an inverse of a
sparse matrix may be dense. When linear optimization problems
(Q = 0) or separable quadratic optimization problems in which Q
is a diagonal matrix are solved the operation (Q + H�1)�1 produces
a diagonal matrix and the normal equations system (22) is usually
the preferable (and default) option. Whenever matrix Q has a more
complicated structure, the augmented system (21) is the best op-
tion. It is worth mentioning that even in the case of Q = 0 certain
sparsity patterns of the LP constraint matrix such as the presence
of dense columns may adversely affect the normal equations ap-
proach and make it inefficient [5,29]. After all, even in the case
when the (1,1) block of the augmented system is diagonal, (22) is
obtained from (21) by employing a particular pivot order, namely
by pivoting on the (1,1) block first. In general, using the augmented
system formulation (21) allows for more freedom in the choice of
pivot order and it is a safer option.

Using interior point methods to solve nonlinear optimization
problems requires dealing with systems similar to (21) except that
matrices A and Q depend on the current primal–dual point (x,y,s)
and therefore change at every iteration. This again strongly advo-
cates for the use of formulation (21) which offers more flexibility
in choosing the pivot order and accommodating varying sparsity
patterns of A and Q. For linear and quadratic problems, Mészáros
[80] performed an interesting analysis and developed a heuristic
to identify which of the two alternative approaches (21) or (22)
is likely to produce a more sparse symmetric decomposition [81].

Normal equations formulation (22) has an important advan-
tage: its matrix is symmetric and positive definite hence eligible
for Cholesky decomposition [29]. The matrix in the augmented sys-
tem formulation (21) is indefinite hence its symmetric decomposi-
tion L D LT may require 2 � 2 pivots in D, see [15]. More
importantly, when indefinite matrices are factored it is in general
impossible to separate the sparsity analysis from the numerical
phase and this substantially increases the cost of decomposition
[29]. Vanderbei [102] observed that by adding a diagonal term to
the (2,2) block, the matrix appearing in (21) can be transformed
to a quasidefinite one. Quasidefinite matrices are strongly factori-
sable, that is, a decomposition L D LT with diagonal D exists for
any symmetric row and column permutation applied to the matrix.
Consequently, there is no need to use 2 � 2 pivots and the sparsity
analysis can be separated from the numerical decomposition.

To produce a diagonal term in the (2,2) block Vanderbei added
artificial variables to all constraints [102]. Saunders and Tomlin
[93,94] achieved a similar result by adding Tikhonov-type regular-
ization terms to the original quadratic problem

min cT xþ 1
2

xT Qxþ q2

2
xT xþ 1

2
pT p

s:t: Axþ dp ¼ b;

x P 0; p free;

ð23Þ

where q and d are (small) positive terms and p 2 Rm is a free vari-
able. The corresponding augmented system for (23) has the follow-
ing form:

�ðQ þH�1 þ q2IÞ AT

A d2I

" #
Dx

Dy

	 

¼

f 0

d0

	 

; ð24Þ

where f 0 2 Rn;d0 2 Rm are appropriately computed right-hand-side
vectors. The presence of diagonal terms in (1,1) and (2,2) blocks
guarantees the boundedness of condition number of the matrix
involved.

The primal–dual regularization approach proposed in [3] re-
places the primal–dual pair (1) by two problems: an approximate
primal and an approximate dual:

min cT xþ 1
2 xT Qxþ 1

2 ðx� x0ÞT Rpðx� x0Þ max bT y� 1
2 xT Qx

� 1
2 ðy� y0Þ

T Rdðy� y0Þ
s:t: Ax ¼ b; s:t: AT yþ s� Qx ¼ c;

x P 0; y free; s P 0;
ð25Þ
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where primal and dual positive definite diagonal regularization
matrices Rp 2 Rn�n and Rd 2 Rm�m and primal and dual reference
points in proximal terms x0 2 Rn and y0 2 Rm, respectively can be
chosen dynamically. The resulting regularized augmented system
has the following form:

�ðQ þH�1 þ RpÞ AT

A Rd

" #
Dx

Dy

	 

¼

f 00

d00

	 

; ð26Þ

where f 00 2 Rn;d00 2 Rm are appropriately computed right-hand-side
vectors. The terms Rp and Rd are chosen dynamically during the fac-
torization and can be kept small except for pivots which are danger-
ously close to zero and potentially unstable. Therefore, the
perturbation introduced using primal–dual regularization [3] is
usually much smaller than the uniform diagonal matrices q2I and
d2I added in Saunders’ approach [93]. Computational evidence
was provided in [3] that primal–dual regularization cures instability
without adversely affecting the fast convergence of the primal–dual
method. A further insight into the primal–dual regularization meth-
od is provided in a recent paper of Friedlander and Orban [36].

Under the condition that 2 � 2 pivots are never required, the
computation of a symmetric factorization of the augmented sys-
tem matrix (21) can benefit from all advantageous techniques
known for the computation of a sparse Cholesky factorization of
the positive definite matrix [29]. All state of the art implementa-
tions of interior point methods developed in the 90s used direct
methods [4,74]. To achieve maximum efficiency the implementa-
tions of sparsity exploiting symmetric factorization of matrix
(21) or (22) make use of numerous advanced features of modern
computers. For example, they exploit loop unrolling, adjust the
sizes of supernodes to maximize the usage of available cache mem-
ory and, most recently, exploit new features offered by multi-core
processors. All these improvements play very important roles in
the efficiency of codes. They do not rely on algorithmic features
of interior point methods but exploit implementation tricks and
are therefore beyond the scope of this paper. We refer the reader
to Mészáros [79] for an example of such a study. In the coming
years we may expect further specializations which will employ
graphical processor units to perform very fast numerical computa-
tions in the linear algebra kernel.

Cholesky decomposition and the symmetric decomposition L D
LT which involves only 1 � 1 pivots (but does not require to use
2 � 2 pivots) can be relatively easily parallelised because the spar-
sity structure analysis is performed only once to determine pivot
order and the numerical phase of the decomposition uses static
data structures. To better exploit modern computer architecture
the numerical operations are performed on small blocks which fit
into cache memory. Viewed from this perspective, the symmetric
factorization becomes a sequence of block-matrix operations. It is
therefore natural to expect that if matrices A and Q are block-struc-
tured then their block-sparsity pattern may be exploited to deter-
mine a block-pivot order in which the eliminations should be
performed. Several specialized implementations of IPMs for partic-
ular block-structured matrices have been developed in the 90s, for
example [12,21,49,56,58,96,100] to mention a few. All these papers
describe specialized algorithms, each exploiting one particular
structure of the constraint matrix. Some of these developments
[49,58,96] also present dedicated parallel implementations.

In a series of papers Gondzio, Grothey and Sarkissian [44–46]
have demonstrated that using modern object-oriented program-
ming techniques it is possible to exploit any block matrix structure
in the implementation of interior point method. The resulting soft-
ware, Object-Oriented Parallel Solver, OOPS1 has been applied to
solve various optimization problems arising in finance, telecommu-
1 http://www.maths.ed.ac.uk/
gondzio/parallel/solver.html.
nications, data mining, electricity transmission and utility distribu-
tion applications. Very large problems with sizes reaching 109

variables [44] can be handled by IPMs if structure is exploited in
the linear algebra kernel.

A closer look at the matrix H = XS�1 which appears in the aug-
mented system (21) and normal equation system (22) reveals that
the elements of this matrix display an unwelcome feature. Indeed,
when IPM approaches the optimal solution, the primal variables
and dual slacks converge to their optimal values and (for a linear
program) converge to a strongly complementary pair [105, p. 27]:

xj ! x	j > 0 and sj ! s	j ¼ 0; for j 2 B;
xj ! x	j ¼ 0 and sj ! s	j > 0; for j 2 N :

ð27Þ

Consequently, the elements hj; j 2 B are very large and display
Oðl�1Þ dependence, while the elements hj; j 2 N are very small
and display OðlÞ dependence. This has disastrous consequences
for the conditioning of matrices in (21) and (22) and makes the
solution of these systems challenging. This feature of linear systems
arising in IPMs is very clearly seen in the case of linear program-
ming, when Q = 0. The situation gets more complicated for qua-
dratic problems because there may exist pairs which are not
strictly complementary. This further complicates the partitioning
(27) and adds a third cluster of elements in H which are Oð1Þ.

Interestingly, the ill-conditioning of matrices turns out to be
rather benign as long as feasible problems are solved. This is a con-
sequence of a particular structure of the right-hand side vector in
(21). This surprising result goes back to Dikin [27] (see also [97])
and guarantees that for feasible LPs the solution of (22) is bounded
irrespective of the spread of H. Computational experience in the
90s [4] confirmed that direct methods provide sufficiently accurate
solutions for IPMs to converge quickly regardless the ill-condition-
ing of (21).

The situation is completely different when iterative approaches
such as Krylov-subspace methods [65] are applied to (21) or (22).
The ill-conditioning of H and the resulting ill-conditioning of
matrices involved makes these systems intractable. Iterative meth-
ods are powerful when applied to well-conditioned systems or
when suitable preconditioners are available for ill-conditioned sys-
tems. For a long time there was a consensus among the interior
point community that there were no obvious preconditioners for
linear systems arising in IPM algorithms and therefore the applica-
tion of iterative methods was not really seriously considered. For at
least two reasons this view started to change in late 90s. Firstly, the
problems got larger and direct methods (however successful)
started to show their limitations. Occasionally, even for very sparse
problems with matrices A and Q having merely a few nonzero ele-
ments per column the factorizations of (21) and (22) display very
significant fill-in and become prohibitively expensive. Secondly, a
better understanding of the conditioning of matrices arising in
IPMs encouraged researchers to look into a design of special
preconditioners.

The first successful preconditioners were developed for spe-
cially structured problems arising in network optimization [91]
(see also [59,35] for more recent developments). They exploited
the particularities of node-arc incidence matrices and an ability
to represent simplex bases by means of spanning trees. A class of
preconditioners applicable in a general LP context was analysed
by Gill et al. [39], Oliveira [87] and Oliveira and Sorensen [88].
Their preconditioners use the partitioning (27) to determine a
splitting of elements of H into two sets of ‘‘small’’ and ‘‘large’’ ones
and employ it to guess a basis matrix B which then becomes the
key object in the definition of the preconditioner P = EET for the
augmented system matrix H in (21). Suppose a basic-nonbasic par-
tition of A = [BjN] deduced from a ðB;NÞ partition of the set {1,2,
. . . ,n} is available, and B is a nonsingular matrix. The symmetric

http://www.maths.ed.ac.uk/~gondzio/parallel/solver.html
http://www.maths.ed.ac.uk/~gondzio/parallel/solver.html
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application of the preconditioner [88] to the augmented system
matrix from the left and from the right gives:

where W ¼ H1=2
N NT B�TH�1=2

B . Sufficiently close to an optimal solu-
tion (when l ? 0) we have H�1

B ¼ OðlÞ ! 0 and HN ¼ OðlÞ ! 0
giving W ¼ H1=2

N NT B�TH�1=2
B � 0 hence the preconditioned matrix

is strongly dominated by its diagonal. The preconditioner requires
B to be nonsingular and relies on the assumption that such B can
be found by considering a subset of columns of A which correspond
to the largest elements of H. This task is actually much more diffi-
cult than it seems because the partitioning (27) does not imply that
the subset of columns of A which correspond to B defines a full row
rank matrix. Therefore an identification of a suitable basis matrix B
is a nontrivial problem. Several techniques have been developed to
deal with it [2,14,88]. The preconditioners which try to guess an
optimal basis work well only in later iterations of the interior point
method, that is, when the iterates approach the optimal partition
(27). Different preconditioners are needed in earlier IPM iterations
[14].

Oliveira and Sorensen [88] have shown that for every precondi-
tioner of the normal equations, an equivalent preconditioner can
be derived for the augmented system. However, the converse
statement is not true. This is a strong argument for developing pre-
conditioners for the augmented system. However, the matrix in
(21) is indefinite and therefore the conjugate gradient algorithm
[55] cannot be applied to this equation system. The developments
of Lukšan and Vlček [72] and Rozloznı́k and Simoncini [92] have
provided conditions under which the conjugate gradient algorithm
may be employed to solve symmetric indefinite systems such as
(21).

Symmetric indefinite systems similar to (21) appear commonly
in the context of partial differential equations as the saddle point
problem. A vast literature exists which addresses iterative solution
methods for such systems and the design of specialized precondi-
tioners for them. The reader interested in such approaches should
consult an excellent survey of Benzi, Golub and Liesen [8]. A pleth-
ora of preconditioners for symmetric indefinite systems arising in
optimization have been proposed in the last decade
[9,10,20,28,30,64,95]. Many of them belong to a broad class of con-
straint preconditioners [28].

Independently of these efforts to develop preconditioners for a
general augmented system (21), several other clever precondition-
ers have been proposed recently for different specially structured
problems. Castro [18] designed a power-series preconditioner for
the Schur complement matrix arising in the solution of multicom-
modity network flow problems and recently Castro and Cuesta [19]
extended this approach to any linear or quadratic problem in
which the constraint matrix has primal block-angular structure.

The use of iterative methods to solve systems such as (21) or
(22) opens new questions regarding the theory of interior point
methods. The key feature of iterative methods is a gradual (some-
times slow) reduction of the error in the equation system and this
is very different from the case when direct methods are used and
very accurate solutions are available. It is advantageous to inter-
rupt iterative process early, obtain only a rough approximation of
the solution, and cut off the tailing effect whenever possible. This
opens a question how inexact solutions of Newton system may
influence the convergence and the complexity estimates of the
interior point method. The problem can be viewed and analysed
in the general context of the inexact Newton method [26]. The
inexact solution of (7) satisfies

A 0 0
�Q AT In

S 0 X

2
64

3
75 � Dx

Dy

Ds

2
64

3
75 ¼ np

nd

nl

2
64

3
75þ rp

rd

rl

2
64

3
75 ð28Þ

and admits errors rp, rd and rl in all three equations. Such analyses
were performed for example by Bellavia [7], Mizuno and Jarre [82]
and Cafieri et al. [17].

There are advantages in studying the behaviour of inexact New-
ton method together with the design of a particular preconditioner
for (21) because this allows us to achieve a better understanding of
the influence of errors on the performance of interior point meth-
ods and ultimately a tighter control of these errors. Recall that (7)
is a linearization of (6) and the first two equations of (6) are linear.
The matrix in the Newton equation system (28) contains several
zero blocks and three diagonal matrices In, X and S, which allows
for different manipulations of the error and absorbing some com-
ponents of it at the expense of increasing the others. For example,
it is easy to absorb any error rd in (28) into Ds by setting
D�s ¼ Dsþ rd causing possibly an increase of the error in the third
equation: SDxþ XD�s ¼ nl þ rl þ Xrd. Such tricks have been used
in the analysis of two particular preconditioners [1,71].

Although so much effort has gone recently into the design of
preconditioners for IPMs, in the author’s opinion, we still lack an
ultimate preconditioner. Indeed, the efficiency of iterative methods
depends on the quality of the preconditioner and it is difficult to
design a general-purpose preconditioner. In consequence, iterative
methods used in IPMs are capricious and depend on fine-tuning.
There is increased research activity in this area and it is natural
to expect that it will produce new interesting developments. It is
encouraging that recently there has been a noticeable shift of inter-
est from direct to iterative methods, see the survey of D’Apuzzo
et al. [24].

The current state of the art is to employ direct methods to solve
(21) (or (22) for LPs and separable QPs) as long as problems are not
too large and there is enough memory to store sparse symmetric
factorization. The increasing size of problems to be solved will
move the balance towards iterative methods. The only way to solve
truly large problems with IPMs is to use an appropriately precon-
ditioned iterative method. We will discuss one such attempt in
the next section.

6. Matrix-free interior point method

Huge optimization problems may defy any algorithm simply
because of the memory requirements. On the other hand, such
problems do not always have to be solved to a high degree of accu-
racy. Therefore, fast algorithms are needed which could provide at
least a rough approximation to the solution of the problem. This
justifies the increased interest in gradient methods. Their worst-
case complexity bounds display Oð1=�Þ or Oð1=�2Þ dependence
on the required accuracy � [84] which is significantly worse than
the Oðlnð1=�ÞÞ dependence of interior point methods. However,
gradient methods enjoy a low per-iteration cost and can solve
some very large problems to one- or two-digit accuracy.

Below we briefly review a recent development of Gondzio
[43] to redesign interior point methods to allow the solution
of very large LPs and QPs with IPMs. In this new approach an
inexpensive iterative method is used to solve the Newton Eqs.
(21) or (22) only approximately. Neither the Newton equation
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system nor the preconditioner for it is formulated explicitly.
Matrices A and Q are used as operators only to deliver the re-
sults of matrix–vector multiplications Ax, ATy and Q x. This ma-
trix-free feature of the approach is essential when one
considers problems which may be too large to store, or when
the problem data is not explicitly available.

Pivoting on the (1,1) block in the regularized augmented sys-
tem (26) produces the following regularized normal equation
matrix

GR ¼ A Q þH�1 þ Rp

� ��1
AT þ Rd; ð29Þ

in which the presence of the nonzero primal regularization Rp guar-
antees an upper bound on the largest eigenvalue of GR and the pres-
ence of the nonzero dual regularization Rd guarantees that the
spectrum of GR is bounded away from zero. Consequently, for
appropriately chosen regularizations Rp and Rd the condition num-
ber of GR is bounded, regardless of the conditioning of H. The pro-
posed preconditioner P 2 Rm�m attempts to identify the largest
eigenvalues of GR and guarantee that j(P�1GR)� j(GR). A partial
Cholesky decomposition of this regularized normal equation matrix
is computed using complete pivoting, that is, choosing the largest
(diagonal) pivots from GR:

GR ¼
L11

L21 I

	 

DL

S

	 

LT

11 LT
21

I

" #
; ð30Þ

where L ¼ L11

L21

	 

is a trapezoidal matrix which contains the first k

columns of Cholesky factor of GR, DL 2 Rk�k is a diagonal matrix
formed by the k largest pivots of GR and S 2 Rðm�kÞ�ðm�kÞ is the Schur
complement obtained after eliminating k pivots. The trapezoidal
matrix L is split into triangular matrix L11 2 Rk�k and rectangular
matrix L21 2 Rðm�kÞ�k which contains the remaining part of columns
of the partial Cholesky factor. With k equal to m we would obtain a
complete Cholesky decomposition of GR = L DLL

T. However, we use a
small number k (k�m) and interrupt the decomposition to deter-
mine only a partial Cholesky factorization.

The preconditioner for (29) is obtained by replacing the Schur
complement matrix S in (30) with its diagonal DS:

P ¼
L11

L21 I

	 

DL

DS

	 

LT

11 LT
21

I

" #
: ð31Þ

The preconditioner is determined without calculating off-diagonal
entries of S. Only the diagonal and selected columns of the Schur
complements are computed and this can be done using an implicit
process in which neither GR nor its Schur complements need to be
fully formulated. The complete pivoting guarantees that the entries
of diagonal matrices DL and DS = diag(S) satisfy the following
inequalities:

d1 P d2 P � � �P dk|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
DL

P dkþ1 P dkþ2 P � � �P dm|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
DS

: ð32Þ

The greedy heuristic which places the largest pivots of GR in DL re-
duces the trace of the Schur complement at the fastest possible rate
and it is expected to capture the cluster of the largest eigenvalues of
GR.

If nonseparable quadratic problems are solved and Q is a non-
diagonal matrix then the reduction from the augmented system
to normal equations should not be made. Instead, a precondi-
tioner for the augmented system is constructed. First, all off-
diagonal elements of Q are dropped and the matrix
Q ¼ diagfQg þH�1 þ Rp is computed and used to determine
(implicitly) GR ¼ AQ�1AT þ Rd. Next, its partial Cholesky decom-
position is computed
GR ¼
L11

L21 I

" #
DL

S

" #
LT

11 LT
21

I

" #
ð33Þ

and again the matrix S is replaced with its diagonal to define an
approximation of GR

P ¼ L11

L21 I

" #
DL

DS

" #
LT

11 LT
21

I

" #
¼ LDLT ð34Þ

and, finally, the preconditioner for the augmented system (26) is
determined

Paug ¼
I

�AQ�1 L

	 

�Q

D

" #
I �Q�1AT

LT

" #
: ð35Þ

In the construction and in the application of both preconditioners
(31) and (35), matrices A and Q are used implicitly to fit into the ma-
trix-free regime.

Spectral analysis of the preconditioner (31) was performed in
[43] and the preliminary computational results confirmed that
the matrix-free approach is promising when applied to certain
classes of difficult problems. Below we will demonstrate how
the method performs when applied to two classes of problems
which defy any existing optimization software: LP relaxations
of quadratic assignment problems and a special class of linear
programs arising in quantum mechanics. All problems used in
our experiments are available on request from the author. Com-
putational experiments were performed on Dell Precision M60
laptop computer with a 2 GHz (single core) processor and 2 GB
of RAM running Linux. The matrix-free version of HOPDM [43]
was compiled with the GNU Fortran compiler g77 with optimi-
zation option -O2. The solver terminates when the infeasibilities
in the primal and dual spaces drop below ep = ed = 10�3 and the
relative duality gap drops below e0 = 10�4. All CPU times re-
ported in tables below are in seconds unless specifically stated
otherwise.

It is worth adding that it is possible to run the matrix-free
method with a more demanding stopping criteria that is with the
smaller feasibility and optimality tolerances. However, this would
require allowing it to use an increased rank of the partial Cholesky
factorization to produce a better preconditioner and allowing it to
perform more conjugate gradient iterations to reduce the error in
the inexact Newton directions.

6.1. LP relaxations of quadratic assignment problems

The quadratic assignment problem (QAP) belongs to a class of
facility location problems. A set of n facilities and n locations is
considered. For each pair of locations, two parameters are deter-
mined: a flow, the amount of goods to be shipped between these
two facilities, and a distance between them. The quadratic assign-
ment problem is to assign all facilities to different locations so that
the sum of distances multiplied by the corresponding flows is
minimized.

QAP is one of the great challenges of combinatorial optimiza-
tion. It is known to be NP-complete and therefore considered to
be very difficult. A plethora of approaches (heuristics) have been
developed to tackle this problem [89]. QAP can be formulated as
a quadratic integer optimization problem which allows us to
study its different polyhedral approximations. The examples con-
sidered in this section are LP relaxations of problems described
by Nugent et al. [86]. These instances can be found at the QAP-
LIB website [16].

The difficulty of LP relaxations of QAPs originates from a high
connectivity (and regularity) of the sparsity pattern in the con-
straint matrix A. The statistics of symmetric LDLT decompositions
of the normal Eq. (22) and augmented system (21) reported in



Table 1
Symmetric LDLT factors in small QAP problems.

Problem Dimensions Cholesky nonzeros

Rows Columns Nonzeros Normal equations Aug system

qap12 3192 8856 38,304 2,135,388 1,969,957
qap15 6330 22,275 94,950 8,191,638 7,374,972
nug12 3192 8856 38,304 2,789,960 1,969,957
nug15 6330 22,275 94,950 11,047,639 7,374,972

Table 2
Solution statistics for small QAP problems.

Problem Cplex 11.0.1 Mtx-Free HOPDM

Simplex Barrier Rank = 200 Rank = 500

Iters Time Iters Time Iters Time Iters Time

qap12 83,236 174.61 16 10.51 8 2.37 8 15.59
qap15 348,190 2369.98 15 65.75 8 6.13 8 25.58
nug12 96,148 187.02 13 9.86 7 2.06 7 14.53
nug15 387,873 2451.40 16 71.33 7 9.78 7 33.73

Table 3
Symmetric LDLT factors in larger QAP problems.

Problem Dimensions Cholesky nonzeros

Rows Columns Nonzeros (Cplex 11.0.1)

nug20 15,240 72,600 304,800 38 � 106

nug30 52,260 379,350 1,567,800 459 � 106

Table 5
Symmetric LDLT factors of quantum physics problems.

Problem Dimensions Cholesky nonzeros

Rows Columns Nonzeros

1k � 1k0 1025 1025 34,817 0.5 � 106

4k � 4k0 4097 4097 270,337 8 � 106

16k � 16k0 16,385 16,385 2,129,921 128 � 106

64k � 64k0 65,537 65,537 16,908,289 2048 � 106
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Table 1 display an unusually high density of factors for these small
linear optimization problems.

Matrix-free method in which the normal equations are solved
by the conjugate gradient method preconditioned with the partial
Cholesky matrix of rank 200 or 500 was applied to solve these
problems. The results collected in Table 2 show that using the pre-
conditioner with rank k = 200, the matrix-free method was signif-
icantly faster than the Cplex Simplex and Cplex Barrier solvers and
could solve these problems in a few seconds of CPU time. CPU time
in bold indicates the fastest solver. We have used a default setting
of Cplex parameters hence it solved the problems to a higher accu-
racy than the matrix-free HOPDM. Using less demanding accuracy
requirements would not change much in the simplex runs but it
could possibly save two or three last IPM iterations of the Cplex
Barrier and therefore improve slightly Cplex Barrier CPU times.

In our second experiment, larger instances of QAP problems
were considered. The statistics of these problems and of their solu-
tion are reported in Tables 3 and 4, respectively. Although for to-
day’s standards these problems are small to medium scale, they
challenge standard LP approaches. Nug20 could still be solved by
the Cplex Simplex in about 22 h of computations and in about
18 min by the Cplex Barrier solver. However, the larger nug30 de-
fied both Cplex solvers. The Simplex run was interrupted after
28 days of computations still far away from optimality and making
Table 4
Solution statistics for larger QAP problems.

Problem Cplex 11.0.1

Simplex Barrier

Iters Time Iters Tim

nug20 285,5100 79451.00 18 103
nug30 ? >28 days – OoM
very slow progress towards it. Cplex Barrier was unable to fit the
Cholesky matrix into memory (Out of Memory, OoM). The ma-
trix-free approach with a partial Cholesky preconditioner of rank
200 was able to solve these two problems in 35 s and 21 min,
respectively.

6.2. LP problems arising in quantum mechanics

The paper of Einstein, Podolsky and Rosen [31] stated an open
question which is known as the EPR paradox (Einstein–Podolsky–
Rosen paradox). Following Wikipedia: ‘‘[EPR paradox] refutes the
dichotomy that either the measurement of a physical quantity in
one system must affect the measurement of a physical quantity
in another, spatially separate, system or the description of reality
given by a wave function must be incomplete.’’

Quantum mechanics predicts that the measurements per-
formed on spatially separated parts of quantum systems may
instantaneously influence each other. The phenomenon is known
as quantum entanglement. A possible way to resolve the EPR para-
dox is to introduce hidden variables and allow the Heisenberg
uncertainty principle to act on these variables. Bell [6] showed that
the EPR thought experiment of quantum mechanics predicts much
stronger statistical correlations between the measurement results
performed on different axes than the theory of hidden variables.
He expressed the differences in a form of inequalities (known as
Bell inequalities) which can be experimentally detected/verified.
Numerous experiments have been constructed to test Bell’s
inequalities on different quantum systems and they essentially
confirmed the predictions of quantum mechanics [48].

The assumption of a local hidden variable model leads to a
number of equations constraining the relationship between quan-
tum–mechanically-predicted probabilities of experiment results
and the model’s local probability distribution. However, for certain
quantum entangled states these constraints cannot be satisfied.
_Zukowski and Kaszlikowski [106] introduced a visibility of the
state and used it to measure the resistance of a state to satisfy
the local hidden variable model’s constraints. A non-visible state
always satisfies all local hidden variable model’s constraints, while
a fully visible state might violate them. A boundary visibility, be-
low which the constraints are satisfied and above which they are
violated, is called the critical visibility. Finding this critical visibil-
ity can be cast as an LP problem where the above constraints form
the polytope and the visibility is the cost function to be maximized.

Such an approach was used for example to show that non-clas-
sicality of two-quNit correlations is higher than for two qubits, and
Mtx-Free HOPDM

Rank = 200 Rank = 500

e Iters Time Iters Time

4.26 6 35.19 5 122.08
5 1271.97 5 4465.60



Table 6
Solution statistics for quantum physics problems.

Problem Cplex 11.0.1 Mtx-Free HOPDM

Simplex Barrier Rank = 100 Rank = 200

Iters Time Iters Time Iters Time Iters Time

1k � 1k0 929 0.38 7 0.82 6 0.55 6 1.09
4k � 4k0 5418 11.17 20 89.19 6 8.47 6 14.45
16k � 16k0 62772 924.94 10 2350.93 7 63.99 5 59.94
64k � 64k0 2578265 111.5 h – OoM 8 520.33 9 917.87
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that it increases with N, the dimension of the Hilbert space [62,63].
Gruca et al. [51] have applied this LP-based approach to analyse
several known experimental results and demonstrated that it is
possible to skip direct analysis of Bell inequalities altogether in
the process. The examples considered in [51] require optimization
of critical visibility which is a continuous but non-differentiable
function of the observables measured in the Bell test experiment
[50]. Since each computation of this function’s value requires a
solution of a non-trivial linear optimization problem the overall
computations may sometimes require weeks of CPU time. Clearly,
the ability to solve LP subproblems efficiently becomes crucial.

Similar to QAP examples, the LP problems modelling quantum
physics are very sparse but they are difficult for IPMs because they
produce almost completely dense Cholesky factors as a conse-
quence of very high connectivity in the sparsity pattern of the con-
straint matrix. The statistics of symmetric LDLT decompositions of
normal Eqs. (22) are reported in Table 5 and flag the expected dif-
ficulty of IPM. Factorizations of the augmented system (21) do not
offer any computational advantage.

The problems are also difficult for the simplex method as can be
seen in the results reported in Table 6. Their difficulty grows rap-
idly with increasing dimensions. The smaller examples are solved
efficiently by the Cplex Simplex but the CPU time to solve the larg-
est one exceeds 111 h. Cplex Barrier delivers the solution of three
smaller examples but due to dense factors it is less efficient than
the simplex method. Cplex Barrier runs out of memory (OoM) for
the largest example. The matrix-free approach is run with partial
preconditioners of rank 100 and 200 and solves all instances in
competitive time. CPU time in bold indicates the fastest solver.

We wrap up this section with a few general comments
regarding the efficiency of interior point methods and their ma-
trix-free variant. For the two particular classes of problems dis-
cussed in this section standard IPMs struggle. However, under
the condition that there is enough memory to store Cholesky
factors they can deliver solutions and, except for the very small
problems, usually do it faster than the simplex method. The
reader should not generalise these observations to any class of
LPs. The simplex method and the interior point method are
two powerful algorithms which compete with each other. How-
ever, there exist classes of problems which can be dealt with
easily as well as classes of problem which challenge (and possi-
bly defy) any of these methods.

The matrix-free variant of the interior point method [43] with a
partial Cholesky preconditioner was successful when applied to
solve the two classes of problems presented in this section. How-
ever, the reader should be cautious of raising their expectations
that the approach will be equally effective when applied to any
very large LP or QP. Being an iterative approach, the matrix-free
variant of IPM relies on the quality of the preconditioner and there-
fore it is exposed to the usual difficulties of finding a well-suited
preconditioner for a given class of problems. There is certainly a
need for other preconditioners able to work in matrix-free regime
and the author expects increased research activity in this area in
the near future.
7. Conclusions

We have addressed in this paper several of the most important
issues of interior point methods. Since their developments started
by the seminal paper of Karmarkar [61] IPMs have changed the
landscape of optimization. They have become a very competitive
alternative to the simplex method when linear programming prob-
lems are solved. Unlike the simplex method, IPMs provide a guar-
antee to solve optimization problems in O

ffiffiffi
n
p

lnð1=eÞ
� �

iterations
and, in practice, display an unequalled convergence in merely a
few iterations almost independent of the problem size.

We have presented an easy to follow proof of polynomial com-
plexity of IPM applied to convex quadratic optimization problems
and have discussed several issues of their implementation. Interior
point methods owe their reliability to the use of direct methods of
linear algebra. However, direct factorization techniques also im-
pose a limitation on the methods’ ability to solve very large optimi-
zation problems. Iterative methods of linear algebra should offer
the way forward. Indeed, there has been increased research activ-
ity in the last decade to develop specialized preconditioners able to
improve the conditioning of linear systems arising in IPMs. Several
interesting preconditioners have already been proposed and we
expect many inspiring approaches are still to be developed.
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