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Industrial production processes involving both lot-sizing and cutting stock problems are

common in many industrial settings. However, they are usually treated in a separate

way, which could lead to costly production plans. In this paper, a coupled mathematical

model is formulated and a heuristic method based on Lagrangian relaxation is proposed.

Computational results prove its effectiveness.
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1. Introduction

This work focuses on decision-making problems
associated with the production planning at tactical/
operational levels. In this context, consider a production
process in which the main activity is to manufacture final
products assembled from parts which are to be cut from
large objects in stock. More particularly, in furniture
industries this cutting process consists of cutting wooden
rectangular plates into smaller ordered parts, as shown in
Fig. 1.

Based on the known demand for final products per
period, a lot-sizing problem (LSP) should be solved to
decide the quantity of each final product which has to
be manufactured in each period of the planning horizon.
The objective is to minimize the production, inventory,
and setup costs. However, it should be noted that the LSP
does not optimize the material lost in the cutting process,
since different lots require different amounts of parts that
lead to a diverse material loss.
ll rights reserved.

ani).
In this paper we propose an integrated methodology to
optimize the LSP and the imbedded cutting stock problem
(CSP) simultaneously. The solution of this combined
problem explores the trade-off when the CSP is solved
by considering the trim loss, as well as the production,
inventory and setup costs of final products for several
periods. For example, if we consider the manufacturing
anticipation of some final products, the storage costs
increase, but probably the trim loss reduces due to better
cutting patterns and setup costs are also expected to be
lowered. This problem is called coupled lot-sizing and
cutting stock problem or, for short, lot-cut problem (LCP).

Typically, industries solve this problem separately by
first solving the LSP, determining the production planning
of final products for each period, and then solving the CSP,
making decisions (for each period) on how to cut each
plate in order to meet the quantity of parts necessary to
fulfill the final product demand. However, when solving
the problem in a decomposed fashion, possible infeasi-
bilities can arise related to saw machine capacity, i.e., in
some periods the planned saw capacity can be greater
than the given capacity. These possible infeasibilities due
to violated capacity constraints are overcome by transfer-
ring production among periods (this approach is reviewed
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Fig. 1. (a) Plates in stock; (b) ordered parts; (c) cutting patterns; and (d)

final products.
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in Section 3). Alternatively, difficulties in obtaining
feasible solutions can be overcome with overtime work
(considering one more work shift) or backlogging.

This alternative can be modeled by considering new
variables to increase the machine capacities, or by tackling
with negative stocks, but this is not considered in this
paper.

The integration of the cutting stock and the production
planning processes has not yet been much discussed in
the literature, but its relevance, found in different
industrial settings suggests that it is a very interesting
and important problem to be researched. This type of
problem is usually found in furniture industries, when
wooden parts should be cut to assemble the final products
(e.g., industrial/residential furniture), in fiber glass in-
dustries that cut fiber glass plates to manufacture printed
circuit boards, in aluminum window frame manufacturing
where aluminum profiles are cut to make several window
types, in the packaging industry where carton plates are
cut in order to fulfill a carton box demand, and so forth. In
all mentioned problems, the lot-sizing and CSPs are
economically relevant in the process.

Drexl and Kimms (1997) suggest many coupled
problems (coordination problems) for future research, for
example the CSP integrated into the LSP, describing them
as ‘‘probably the most crucial objective for future work’’.
Some work involving cutting stock decisions in production
planning have been found in the literature (see Arbib
and Marinelli, 2005; Hendry et al., 1996; Nonas
and Thorstenson, 2000, 2008; Poltroniere et al., 2008;
Reinders, 1992) but, either they do not consider capacity
constraints, or they consider the cutting patterns known
as a priori, or they use a two-phase solution procedure.
None of them solve both problems in conjunction
considering capacity constraints, setup, storage, and trim
loss costs.

Gramani and Franc-a (2006) analyzed the trade-off that
arises when solving the CSP by taking into account the
production planning for various periods. The goal was to
minimize the trim loss costs in the cutting process, the
inventory costs (for parts) and the setup costs. The
authors formulated a mathematical model of the com-
bined cutting stock and LSP and proposed a solution
method based on an analogy with the network shortest
path problem, comparing its results with the ones
simulated in the industrial practice. However, this paper
does not consider the final products.

Analogously, other problems at a tactical/operational
level can be linked with a view to a better global solution.
Recently, Toledo et al. (2008) have presented an optimiza-
tion model for the integrated lot-sizing and scheduling
problem in a soft drink industry. The challenge of this
work was to determine simultaneously the minimum lot-
sizing and scheduling costs of raw material in tanks and
also in the bottling lines, where setup costs and setup
times are sequence-dependent.

Pileggi et al. (2005) also studied another combined
problem. The authors presented three heuristic ap-
proaches to deal with the integrated cutting pattern
generation and sequencing problem, taking into consid-
eration the trade-off between trim loss and the number of
open stacks. Although the investigation of combined
problems is very relevant, the studies found in the
literature are still not vast.

This paper is organized as follows: in the next section,
a mixed-integer mathematical model for the LCP is
proposed. Then, in Section 3 a decomposition heuristic
(DH) is presented, which reflects the industrial practice
for solving the lot-sizing and CSPs separately. In Section 4,
a heuristic based on Lagrangian relaxation is described,
which is able to find good quality solutions in quite
reasonable computational times. Finally, computational
comparisons using four sets of randomly generated
instances are presented.

2. Mathematical modeling

In this section, we present a new approach for the
combined cutting stock and LSP. Consider a stock of
rectangular plates of length L and width W (Fig. 1a) to be
cut into m rectangular ordered parts of lengths lp and
widths wp, p ¼ 1,2,y,P (Fig. 1b). The order for parts to be
cut in each period depends on the decision of how many
final products are manufactured per period. The CSP
consists of cutting plates into smaller parts so that the
ordered parts are met and a certain function is optimized
(e.g., the trim loss, the cost of plates cut). The way a plate
is cut provides a cutting pattern (Fig. 1c), and how
many plates are cut according to a cutting pattern is a
decision variable. Our model of the combined problem
does not use a previous set of cutting patterns generated a

priori.
Let T be the number of periods, M the number of

different types of final products demanded, P the number
of different types of parts, and N the number of all
possible cutting patterns. Considering an index variation
as t ¼ 1,y,T, i ¼ 1,y,M, p ¼ 1,y,P, j ¼ 1,y,N, the problem
parameters and variables are defined as:

Parameters:

dit: demand for final product i in period t;

rpi: number of parts of type p necessary to compose a unit of final

product i;

bt: saw machine capacity expressed as the total amount of material area

possible to be cut in period t;

apj: number of parts of type p in cutting pattern j;
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cp: unit cost of the plate to be cut;

cit: unit production cost of final product i in period t;

hit: unit inventory cost of final product i in period t;

sit: setup cost of final product i in period t;

L�W: length and width of the plate;

lp�wp: length and width of the part of type p.

Variables:

xit: number of final products i to be manufactured in period t;

Iit: number of final products i stocked at the end of period t;

yjt: number of plates cut according to pattern j in period t;

zit: binary variable: zit ¼ 1 if xit40; zero, otherwise.

The following constraints should be considered.
Inventory balance of final products:

xit þ Ii;t�1 � Iit ¼ dit ; i ¼ 1; . . . ;M; t ¼ 1; . . . ; T (1)

These constraints assure that the demand of final
product i in period t (dit) is met without delay, i.e., IitX0,
i ¼ 1,y,M; t ¼ 1,y,T. Without loss of generality, the initial
inventory can be considered zero. Note that in this paper,
the storage costs for the parts are not considered. Having
in mind that the most important parcel of the storage cost
is the alternate use of the immobilized capital incorpo-
rated in final products, the storage cost for the parts is
implicitly considered in the final product holding cost.

Parts demand:

XN

j¼1

apjyjtX

XM
i¼1

rpixit ; p ¼ 1; . . . ;P; t ¼ 1; . . . ; T (2)

The left hand side is the number of type p parts cut
which has to be greater than or equal to the number of
required type p parts on the right hand side.

Saw machine capacity:

XM
i¼1

vixitpbt ; t ¼ 1; . . . ; T (3)

where vi ¼
Pp

p¼1ðrpilpwpÞ; i ¼ 1; . . . ;M is the material
area needed to make a unit of final product i. These
constraints assure the material area cut is less or equal to
the saw machine capacity (bt).

Setup and production linkage:

xitpQzit ; i ¼ 1; . . . ;M; t ¼ 1; . . . ; T (4)

where Q is a large number.
These constraints assure that zit ¼ 1, if xit 40. In case of

xit ¼ 0, the condition zit ¼ 0 follows to reach optimality.
Note that in this paper the aim of the cutting process is to
minimize only the trim loss so the setup in this process is
not considered. Observe that if the cutting process also
aims to minimize the number of pattern changes then the
setup in the cutting process becomes more relevant.

Objective:

XM
i¼1

XT

t¼1

ðcitxit þ hitIit þ sitzitÞ þ
XN

j¼1

XT

t¼1

cpLWyjt (5)

The objective function to be minimized is the overall
cost of production, inventory, and setup and the costs
derived from the plate’s use.
The mixed-integer mathematical model (LCP) can be
written then as follows:

Z ¼Min
XM
i¼1

XT

t¼1

ðcitxit þ hitIit þ sitzitÞ þ
XN

j¼1

XT

t¼1

cpLWyjt

(6)

s:t: xit þ Ii;t�1 � Iit ¼ dit ; i ¼ 1; . . . ;M; t ¼ 1; . . . ; T (7)

XN

j¼1

apjyjtX

XM
i¼1

rpixit ; p ¼ 1; . . . ; P; t ¼ 1; . . . ; T (8)

XM
i¼1

vixitpbt ; t ¼ 1; . . . ; T (9)

xitpQzit ; i ¼ 1; . . . ;M; t ¼ 1; . . . ; T (10)

xit ; IitX0; zit 2 f0;1g; i ¼ 1; . . . ;M; t ¼ 1; . . . ; T (11)

yjtX0; j ¼ 1; . . . ;N; t ¼ 1; . . . ; T (12)

The integer condition on decision variables xit, Iit, and yjt

can be relaxed if demands are high, but two difficulties
still remain: the enormous quantity of cutting patterns
(apj) that could be generated and the presence of 0–1
setup variables. Note that constraints (8) are those that
couple decisions of lot-sizing and cutting. Next, we give
two approaches to heuristically solve problem (6)–(12).
3. Solution methods

3.1. Decomposition heuristic (DH): LSP and CSP solved

separately

Typically practical decision makers build their produc-
tion plans in two sequential steps:
�
 Step 1: Solve the LSP: first part of (6) subject to: (7),
(9)–(11) and obtain xit;

�
 Step 2: With xit fixed in Step 1, solve the CSP: second

part of (6) subject to (8), (12).
Although solving the problems in a separated form is
simpler due to the existence of efficient algorithms in the
literature, it can increase the global costs, especially if the
plate’s costs are relevant in the total costs of the product.
In the furniture industry, for example, the plate’s cost can
correspond to approximately 50% of the final product cost.
3.2. Lagrangian heuristic (LH)

Let mptX0, p ¼ 1,y,P; t ¼ 1,y,T and ltX0, t ¼ 1,y,T be
the Lagrangian multipliers associated with constraints (8)
and (9), respectively. Then, the Lagrangian problem,
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denoted by L(k,l), can be written as follows:

ZLðl;mÞ ¼Min
XM
i¼1

XT

T¼1

ðcitxit þ hitIit þ sitzitÞ þ
XN

j¼1

XT

t¼1

cpLWyjt

þ
XT

t¼1

lt

XM
i¼1

vixit � bt

 !

þ
XP

p¼1

XT

t¼1

mpt

XM
i¼1

rpixit �
XN

j¼1

apjyjt

0
@

1
A (13)

or Min
XM
i¼1

XT

T¼1

cit þ ltvi þ
XP

p¼1

mptrpi

 !
xit þ hitIit þ sitzit

" #

þ
XN

j¼1

XT

t¼1

cpLW �
XP

p¼1

mptapj

 !
yjt �

XT

t¼1

ltbt (14)

s:t: xit þ Ii;t�1 � Iit ¼ dit ; i ¼ 1; . . . ;M; t ¼ 1; . . . ; T (15)

xitpQzit ; i ¼ 1; . . . ;M; t ¼ 1; . . . ; T (16)

xit ; IitX0; zit 2 f0;1g; i ¼ 1; . . . ;M; t ¼ 1; . . . ; T (17)

yjtX0; j ¼ 1; . . . ;N; t ¼ 1; . . . ; T (18)

The Lagrangian problem can be decomposed into the
following two sub-problems:

1. Lot-sizing sub-problem LS (k,l):

ZLSðl;mÞ ¼Min
XM
i¼1

XT

t¼1

cit þ ltvi þ
XP

p¼1

mptrpi

 !
xit

"

þ hitIit þ sitzit

#
�
XT

t¼1

ltbt (19)

s:t: xit þ Ii;t�1 � Iit ¼ dit ; i ¼ 1; . . . ;M; t ¼ 1; . . . ; T (20)

xitpQzit ; i ¼ 1; . . . ;M; t ¼ 1; . . . ; T (21)

xit ; IitX0; zit 2 f0;1g; i ¼ 1; . . . ;M; t ¼ 1; . . . ; T (22)

Note that LS(k,l) can be decomposed into M indepen-
dent sub-problems, for each product i, and each one can
be satisfactory solved by dynamic programming (Evans,
1985; Wagner and Whitin, 1958).

2. Cutting sub-problem C(l):

ZCðmÞ ¼Min
XN

j¼1

XT

t¼1

cpLW �
XP

p¼1

mptapj

 !
yjt (23)

s:t: yjtX0; j ¼ 1; . . . ;N; t ¼ 1; . . . ; T (24)

Therefore, ZL(l,m) ¼ ZLS(l,m)+ZC(m), which is a lower
bound to LCP (6)–(12). The problem of determining the
maximum lower bound is the dual Lagrangian problem, to
be solved by the sub-gradient method.

Note that the cutting sub-problem C(l) has an obvious
lower bound which can be obtained as follows: if ðcpLW�PP

p¼1mptapjÞo0, then yjt-N and ZC(m)-�N and, conse-
quently, ZL(l,m)-�N. Therefore, mpt should be chosen in
such a way that ðcpLW �

PP
p¼1mptapjÞX0.
The condition ðcpLW �
PP

p¼1mptapjÞX0 is the optimal-
ity condition to the tth CSP, denoted by CS(xt), t ¼ 1,y,T:

ZCSðxÞ ¼Min
XN

j¼1

XT

t¼1

cpLWyjt (25)

s:t:
XN

j¼1

apjyjtX

XM
i¼1

rpixit ; p ¼ 1; . . . ; P (26)

yj;tX0; j ¼ 1; . . . ;N (27)

where xt
¼ (xit)i ¼ 1,y,M is the solution of LS(k,l). There-

fore, CS(xt), t ¼ 1,y,T are solved instead of C(l) and their
dual variables, lt

¼ (mpt)p ¼ 1,y,P are used as the Lagran-
gian multipliers to L(k,l). Note that with this choice it
follows that: ZC(m) ¼ 0. Consequently, ZL(l,m) ¼ ZLS(l,m).

The solution approach consists of solving the Lagran-
gian problem ZL(l,m) for the initial iteration given lt

and mpt, first obtaining a solution. If this solution satisfies
the relaxed constraints and if the values of the objective
functions of the original problem and the Lagrangian
problem are the same (within a tolerance) so the optimal
solution for the original problem is achieved. Otherwise,
the Lagrangian multipliers must be updated.

In order to update l dual variables and maximize
the lower bound ZL(l,m) the sub-gradient method is used
(observe that the l variables are associated to constraints
(9), and the term

PT
t¼1ltð

PM
i¼1vixit � btÞ is added to the

Lagrangian objective function).
The search direction is given by the projection of the

sub-gradient onto non-negative variables: / ¼ (ft)t ¼ 1,y,T,
where ft ¼maxf0;

PM
i¼1vixit � btg. Therefore

lt  lt þ �ft ; t ¼ 1; . . . ; T (28)

where the step � ¼ pðZUB � ZLBÞ=
PT

t¼1f
2
t and initially

p ¼ 2, and halved after 10 iterations without improve-
ments. As a monotone improvement of the dual function
is not guaranteed, the best solution found should be
saved.

The stopping criteria used for the sub-gradient method
according to Camerini et al. (1975) are:
1.
 If the step size is less than a tolerance (eo10�5).

2.
 If the maximum iteration number is achieved (max-

imum of 100 iterations).

3.
 If the lower and upper bounds differ from a tolerance

(ZUB-ZLBo10�5).

It is worth remarking that when LS(k,l) is solved
obtaining ZLB, probably an unfeasible solution is found by
violating saw machine capacities (9). Therefore, a smooth-
ing heuristic to recover feasibility is used. This heuristic
consists of two steps, regressive and progressive, to
transfer lots to previous or later periods, if possible,
according to capacity availability (see (Trigeiro et al.,
1989), for transferences based on Wagner–Whitin optim-
ality properties or (Araujo and Arenales, 2000) for
transferences based on slack complementary optimality
properties). This heuristic provides a feasible solution and
so an upper bound ZUB.
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4. A Lagrangian-based heuristic to LCP

The previous developments give us a heuristic to solve
LCP (6)–(12), which is summarized as follows:
1.
 Choose initial multipliers lt and mpt. The iteration
number index is represented by it.
2.
 Solve LS(k,l), and obtain xt
¼ (xit)i ¼ 1,y,M, t ¼ 1,y,T.

Apply a smoothing heuristic to obtain a feasible
solution.
3.
 Solve CS(xt), t ¼ 1,y,T, and obtain lt
¼ (mpt)p ¼ 1,y,P.
4.
 Update k according to the sub-gradient method.

5.
 If a stopping criterion is met then stop, otherwise go to

step 2.

The flow chart in Fig. 2 represents the Lagrangian-based
heuristic.

It should be noted that ZLB and ZUB values do not give
monotonic sequences along the iterations of the LH. To
confirm that the properties of lower and upper bounds for
ZLB and ZUB are guaranteed for each iteration, their values
are updated only when they are strictly better than the
current values.

5. Computational results

The proposed heuristics were implemented using the
programming language C and commercial package CPLEX
7.5 was used for solving the CSP.

Computational tests were executed in four sets with 10
instances each. The first and the second sets (small
instances) consider 7 periods for the planning horizon,
20 different types of parts and 10 final products, where
the width (wp) and the length (lp) of the parts are
randomly generated in the interval [25,50] for the first
set and in [10,75] for the second test set. The third and
fourth sets (large instances) consider 7 periods, 30 different
types of parts and 15 final products, where the width (wp)
and the length (lp) of parts are generated in the interval
[25,50] for the third set and in [10,75] for the fourth set.

The problem parameters were randomly generated
using the following intervals:
�
 rpi in interval [0,5].

�
 dit in interval [0,200] and di1 in interval [0,50] (in order

to reduce infeasibilities right in the first period).

�
 The final product cost (cit) is given by the area of raw

material that product i requires: cit ¼
PP

p¼1rpilpwp for
i ¼ 1,y,M; t ¼ 1,y,T. Of course, any price per unit area
could be used. Note that, for simplification, cit is
independent of t.

�
 The final product inventory costs were defined as:

hit ¼ 0.001cit, for i ¼ 1,y,M; t ¼ 1,y,T.
�
 The plate length and width were defined as 100.

�
 The plate cost was taken as: cp ¼ LW/10.

�
 The setup cost is the same for all the final products and

periods, and is given by sit ¼ 10*c11.

�
 The cutting capacity bt was generated as the mean

value of the capacity used, when the lot-for-lot method
is applied to determine the lot sizes. It produces
exactly the respective demand in each period, im-
plicating zero storage in all periods. It is assumed
b1 ¼ b1+0.3b1, in order to reduce infeasibilities in the
first period.

�
 In all examples the maximum number of allowed

iterations in the sub-gradient method, equal to 100, is
utilized.

The CSPs were restricted to 2-stage guillotine cutting
patterns. A cut is of guillotine type if when applied to a
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rectangle, two new rectangles are produced (Figs. 3a
and b). A guillotine-cutting pattern is obtained from
sequential guillotine cuts (Fig. 3c).

Guillotine cutting patterns are called 2-stage if just
one change in the direction of guillotine cuts is allowed
(see Fig. 4).

A 2-stage guillotine-cutting pattern gives the coeffi-
cients apj in constraints (8). The model (6)–(12) allows for
any other kind of cutting patterns, but in this case, the
machine capacity is affected by the number of stages
(cut orientations) and number of cuts (see Morabito and
Arenales, 2000 for practical cutting patterns in furniture
industries). The decomposition method of Gilmore and
Gomory (1965) can be used to determine a 2-stage
guillotine cutting pattern. For an alternative methodology
see Morabito and Arenales (1995).

The validation of the lot-cut approach proposed in this
paper is made through the comparison of the results
Fig. 3. (a) Vertical guillotine cut; (b) horizontal guillotine cut; and (c)

guillotine cutting pattern.

Fig. 4. A 2-stage guillotine-cutting pattern.

Table 1
20 pieces, 10 final products, 7 periods, 25pl, wp50.

DH solution without

feasibility

DH solution

#Setup Storage

costs

#Setup #Plates Storage

costs

1 15 85,298 29 9,490 37,486

2 13 155,753 28 10,313 68,469

3 14 153,838 31 12,156 64,647

4 12 153,149 27 9,423 49,930

5 12 164,244 37 9,998 46,834

6 13 171,600 29 12,183 64,953

7 14 123,364 27 9,739 53,213

8 15 107,842 36 10,335 64,818

9 14 143,296 35 12,181 56,321

10 12 135,959 29 7,852 54,985

Mean

value

13 139,435 31 10,367 56,165

Mean time of 4 s per instance.
obtained with the LH with those obtained using the DH,
that is, a comparison between the new combined
approach and the methodology normally used by indus-
try. It should be noted that the feasible solution obtained
in the first iteration of LH corresponds to the DH solution.
For a broader visibility of the comparisons, the DH results
without the feasibility step were also shown. This will be
known as DH solution without feasibility.

Tables 1–4 show the results for the three heuris-
tics—DH without feasibility, DH and LH—when executing
the four instance sets, where:
�
 The column #setups denotes the number of setups.

�
 The column #plates presents the number of cut plates.

�
 The column storage cost denotes the total inventory

cost.

�
 The columns setup variation and storage variation

present the relative deviation obtained by the LH
solution when compared with the DH solution.
As for simplification cit is assumed to be independent of
t, the production cost is not included in the results.

Tables 1 and 2 represent the results obtained with
instance set 1 and 2 (small) and Tables 3 and 4 with
instance sets 3 and 4 (large). In the captions of each
table, the mean time for execution of one instance
is indicated. Firstly observe the relevance of the feasi-
bility heuristic (Trigeiro et al., 1989) denoted by the
differences between the values obtained in columns #setup

and storage costs for the DH solution without feasibility and
DH solution, respectively. In order to get feasible solutions
the number of setups has to be increased considerably
resulting in substantial reductions in storage costs.

When comparing the DH solution with the LH solution,
it can be observed that the main reductions are obtained
in the number of setups, while the storage costs do not
show such an impressive improvement and the number of
plates remains almost the same. Tables 1 and 2 show that
LH solution Setup

variation

(%)

Storage

variation

(%)

#Setup #Plates Storage

costs

27 9,490 37,405 7.41 0.22

24 10,313 68,964 16.67 �0.72

27 12,156 59,321 14.81 8.98

27 9,423 48,310 0.00 3.35

28 9,998 44,953 32.14 4.18

26 12,183 66,264 11.54 �1.98

26 9,739 52,351 3.85 1.65

25 10,335 64,704 44.00 0.18

27 12,181 56,251 29.63 0.12

24 7,852 47,837 20.83 14.94

26 10,367 54,636 18.09 3.09
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Table 2
20 pieces, 10 final products, 7 periods, 10pl, wp75.

DH solution without

feasibility

DH solution LH solution Setup

variation

(%)

Storage

variation

(%)

#Setup Storage

costs

#Setup #Plates Storage

costs

#Setup #Plates Storage

costs

1 15 112,718 30 15,560 46,780 28 15,631 47,786 7.14 �2.11

2 11 327,759 26 18,920 117,144 24 18,910 114,377 8.33 2.42

3 13 225,234 29 21,098 85,791 25 20,995 81,850 16.00 4.82

4 11 226,223 28 14,264 80,197 24 14,559 78,716 16.67 1.88

5 12 237,530 32 18,216 65,528 27 18,302 54,212 18.52 20.87

6 12 180,848 28 13,137 53,790 26 13,122 53,681 7.69 0.20

7 15 119,731 29 11,996 59,232 26 11,964 56,333 11.54 5.15

8 12 160,713 29 12,245 55,354 27 12,234 57,000 7.41 �2.89

9 15 115,945 44 12,885 71,195 25 12,762 66,867 76.00 6.47

10 11 230,777 35 18,341 44,242 30 18,319 43,656 16.67 1.34

Mean

value

13 193,748 31 15,676 67,925 26 15,680 65,448 18.60 3.82

Mean time of 25 s per instance.

Table 3
30 pieces, 15 final products, 7 periods, 25pl, wp50.

DH solution without

feasibility

DH solution LH solution Setup

variation

(%)

Storage

variation

(%)

#Setup Storage

costs

#Setup #Plates Storage

costs

#Setup #Plates Storage

costs

1 18 332,221 40 22,459 98,752 39 22,459 99,575 2.56 �0.83

2 16 456,497 44 24,778 107,813 37 24,778 109,875 18.92 �1.88

3 15 349,031 47 17,504 63,739 38 17,504 65,419 23.68 �2.57

4 21 260,703 35 20,338 135,317 34 20,338 139,320 2.94 �2.87

5 16 451,588 46 23,976 115,057 40 23,976 112,934 15.00 1.88

6 17 361,365 55 21,800 88,806 40 21,800 88,289 37.50 0.59

7 18 362,117 42 22,438 96,719 38 22,438 98,601 10.53 �1.91

8 19 296,087 43 21,140 107,740 35 21,140 110,384 22.86 �2.40

9 21 321,903 55 26,130 104,039 39 26,130 104,467 41.03 �0.41

10 16 391,568 47 22,502 82,211 39 22,502 83,692 20.51 �1.77

Mean

value

18 358,308 45 22,307 100,019 38 22,307 101,256 19.55 �1.22

Mean time of 5 s per instance.
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the relative deviation with respect to the setups is about
18%, i.e., the LH has obtained a reduction of 18% in the
number of setups in comparison with the DH solution.
Storage costs were reduced by a modest 2–3%.

In Tables 3 and 4, where a greater number of parts is
considered—and thus having more possibilities for their
arrangement in the plates, it can also be noticed that the
Lagrangian solution increases the inventory costs, which
is compensated with a reduction in the number of setups
(by achieving better cutting patterns).

A quality measure of the solutions obtained by the
proposed heuristic LH and the DH approach is the relative
deviation between the lower and upper bounds accom-
plished by them:

GAP ¼
ZUB � ZLB

ZLB
� 100% (29)

It should be observed that even when a very good
solution is obtained, it is possible to have a solution of low
quality due to a poor upper bound.
Fig. 5 presents the mean deviation between the lower
and upper bounds attained by DH and LH. Obviously, the
GAP LH is always smaller than or equal to the GAP DH, but
in most cases LH has achieved a significant improvement.

It can be noticed also that in some cases the GAP LH is
zero or very close to zero. This means that the proposed
LH could get solutions that are very close to the optimum
of the combined problem.
6. Conclusions

In this paper a new mathematical model for the
combined lot-sizing and cutting stock problem is pre-
sented. The model incorporates the conjecture that it is
advantageous to anticipate the production of certain final
product lots, which on the one hand will increase the
inventory costs, but on the other hand will compensate
with the reduction of the setup and cutting costs (using a
better arrangement in cutting patterns and trim losses).
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Table 4
30 pieces, 15 final products, 7 periods, 10pl, wp75.

DH solution without

feasibility

DH Solution LH Solution Setup

variation

(%)

Setup

variation

(%)

#Setup Storage

costs

#Setup #Plates Storage

costs

#Setup #Plates Storage

costs

1 15 585,135 42 33,353 121,270 39 33,355 121,731 7.69 �0.38

2 15 623,905 52 37,560 125,523 38 37,670 127,632 36.84 �1.65

3 16 508,470 38 29,624 148,955 36 29,420 149,158 5.56 �0.14

4 18 577,871 40 39,336 231,326 33 39,379 238,516 21.21 �3.01

5 16 475,641 46 30,703 112,882 39 30,642 112,504 17.95 0.34

6 17 448,470 44 30,348 108,707 38 30,213 107,910 15.79 0.74

7 16 604,976 50 39,728 124,447 40 39,358 128,858 25.00 �3.42

8 17 336,231 41 24,627 87,242 36 24,516 90,336 13.89 �3.42

9 19 557,003 40 42,306 165,131 38 42,297 161,401 5.26 2.31

10 19 458,315 41 37,812 164,999 38 37,929 163,238 7.89 1.08

Mean

value

17 517,602 43 34,540 139,048 38 34,478 140,128 15.71 �0.76

Mean time of 32 s per instance.

Fig. 5. Comparisons between lower and upper bounds.
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For this model, a resolution method based on Lagrangian
relaxation is proposed, using the sub-gradient method to
update the Lagrange multiplier vectors. In order to compare
the results of the proposed Lagrangian heuristic (LH), the
decomposition heuristic (DH) was used. The DH heuristic
reflects the industrial practice of treating the problem
separately, first solving the lot-sizing problem and then, for
each period of the planning horizon, solving a cutting stock
problem. That solution is provided by the first iteration of
the Lagrangian heuristic.

The effectiveness of the proposal can be shown by the
computational results obtained for 4 test sets by two
different analyses: (1) the relative deviation of the setup,
plates and storage quantities obtained by the DH and LH
solutions and (2) the gain obtained by the LH solution
when compared with the DH solution. The findings
for large problems reveal that the approach that deals
with the problems in a combined form (LH) presents a
small increase in the storage costs, which is more than
compensated by a substantial reduction in the setup
costs and a small decrease in the number of cut plates.
For smaller problems (represented by Tables 1 and 2) the
results were similar, in this case, even for the storage cost
a reduction was observed (around 3%). It is worth noticing
that for some instances, the LH was able to find optimal
solutions.
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In short, in many manufacturing processes where
cutting decisions have a great impact on production costs
(such as furniture industries, leather product industries
process, and packaging industries), storage, setup costs,
and trim losses are relevant decisions that managers wish
to achieve in the minimum cost plan. To make this
decision more helpful, we show in this paper that instead
of solving these problems in a separate way, the
Lagrangian heuristic aggregates most of the relevant
decisions, and leads to a lower total cost plan.
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