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a b s t r a c t 

Extreme events such as disasters cause partial or total disruption of basic services such as water, energy, 

communication and transportation. In particular, roads can be damaged or blocked by debris, thereby ob- 

structing access to certain affected areas. Thus, restoration of the damaged roads is necessary to evacuate 

victims and distribute emergency commodities to relief centers or affected areas. The Crew Scheduling 

and Routing Problem (CSRP) addresses decisions in post-disaster situations with the aim of minimizing 

the time that affected areas remain inaccessible. The integration of crew scheduling and routing decisions 

makes this problem too complicated to be effectively solved for practical instances using mixed integer 

programming (MIP) formulations recently proposed in the literature. Therefore, we propose a branch-and- 

Benders-cut (BBC) algorithm that decomposes the integrated problem into a master problem (MP) with 

scheduling decisions and subproblems with routing decisions. Computational tests based on instances 

from the literature show that the proposed exact method improves the results of MIP formulations and 

other exact and metaheuristic methods proposed in literature. The BBC algorithm provides feasible solu- 

tions and optimality gaps for instances that thus far have not been possible to solve by exact methods in 

the literature. 

© 2018 Elsevier B.V. All rights reserved. 
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1. Introduction 

Infrastructure systems that provide essential public services

such as water, energy, telecommunications, and transportation are

commonly disrupted after extreme events. Floods, landslides, and

earthquakes are examples of natural hazards that might dam-

age the overall network composed by roads, bridges, and tunnels,

thereby contributing to the interruption of services and logistics

activities. In this context, restoring transportation infrastructure is

crucial to carry out an effective short-term response, which in-

cludes the evacuation of victims from affected areas to temporary

shelters and the distribution of relief aid. The restoration of trans-

portation infrastructure after extreme events is referred to in the

literature as the road restoration problem ( Tuzun Aksu & Ozdamar,

2014 ). 

Road restoration involves certain decisions that must be taken

quickly, such as the selection of the roads to restore and the

scheduling and routing of the crews that will perform the repair
∗ Corresponding author. 
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ctivities. In this paper, we are particularly interested in a variant

tudied in Maya-Duque, Dolinskaya, and Sörensen (2016) that ex-

licitly considers the complex interdependence between schedul-

ng and routing decisions for a single crew, hereafter called the

rew Scheduling and Routing Problem (CSRP) in road restoration.

e consider that a damaged road can have one or more damaged

oints (damaged nodes), as may occur in real cases, especially on

ong highways. The scheduling decisions define the sequence in

hich the damaged nodes in the network will be visited by the

rew. The routing decisions determine the paths/routes to be used

y the crew to visit and repair the damaged nodes. In this vari-

nt, a path is usually a sequence of nodes and arcs used by the

rew to travel from one damaged point to another, while a route

s a sequence of paths that ends at the depot after repairing all the

amaged nodes. The objective is to restore the damaged nodes in

he network as soon as possible, because they are necessary to de-

ne paths connecting a source node to demand nodes that require

umanitarian assistance. 

The design of crew routes is challenging because damaged

odes can obstruct access to other nodes of the network and also

amaged roads are not traversable unless they are completely re-

aired first. The traversable roads include those that were not

https://doi.org/10.1016/j.ejor.2018.11.004
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amaged and the repaired ones. Then, the number of paths that

re feasible at a specific moment depends on which nodes are

amaged at that moment, which in turn depends on the schedul-

ng decisions. In addition, without considering routing decisions

imultaneously, the damaged nodes that are not accessible at a

iven moment might be selected first in the schedule, making the

chedule infeasible in practice. Furthermore, the shortest paths be-

ween damaged nodes, if they exist, change dynamically during the

estoration according to the schedule. 

The integration of the main decisions that emerge in road

estoration has been addressed by other authors in the literature

 Çelik, 2016 ). Particularly, the CSRP has been tackled recently via

he proposition of MIP and dynamic programming models ( Maya-

uque et al., 2016 ). However, such models have proven to be in-

ractable and failed to solve even small instances. Hence, the au-

hors have devised heuristic methods ( Maya-Duque et al., 2016 ) to

btain feasible solutions for the instances of the CSRP. As usual, the

ain drawback of heuristic approaches is that they do not pro-

ide optimality guarantees or any information on the quality of

he solutions. Furthermore, a heuristic can stagnate in locally sub-

ptimal solutions. 

In this paper, we develop an exact algorithm based on Ben-

ers decomposition for the CSRP. The algorithm exploits the fact

hat when the scheduling decisions are fixed, the routing deci-

ions become a set of shortest-path subproblems. To solve the

ubproblems, we propose specialized algorithms based on Dijk-

tra’s shortest-path algorithm. Hence, we consider a master prob-

em (MP) with scheduling decisions and subproblems with the

emaining routing decisions. The resulting MP obtained from the

enders decomposition is solved by a single search tree, exploring

he generation of cuts inside the tree. This strategy has been re-

ently referred to as branch-and-Benders-cut (BBC) ( Errico, Crainic,

alucelli, & Nonato, 2017; Gendron, Scutellà, Garroppo, Nencioni,

 Tavanti, 2016 ) and has been shown to be more effective than

he standard Benders approach, which solves a mixed-integer MP

t each iteration. We are not aware of any other decomposition-

ased exact algorithm proposed for the CSRP or related variants. 

Due to the discrete subproblems, standard duality theory can-

ot be applied to derive cuts; therefore, we propose different

ypes of lower-bounding functions and combinatorial Benders cuts

 Laporte & Louveaux, 1993 ) based on particular characteristics of

he CSRP. Combinatorial Benders cuts cut off infeasible solutions

n the MP, while lower-bounding functions set lower bounds for

he feasible solutions in the MP. We empirically compare different

BC approaches based on combinations of feasibility and optimal-

ty cuts. In addition, we add valid inequalities to the MP, which

elps to transfer information from the subproblems that is lost due

o the decomposition. Construction and local search heuristics are

lso used to provide good initial solutions for the BBC. 

The remainder of this paper is organized as follows. In

ection 2 , we describe the CSRP. Section 3 shows the related lit-

rature. In Section 4 , we present the BBC algorithm. We discuss

he computational results in Section 5 . Finally, Section 6 presents

nal remarks and areas of future research. 

. Problem description 

The CSRP is defined on an undirected and connected graph

 = ( V , E ) , in which V is the set of nodes and E is the set of

dges (arcs). There are demand nodes ( V d ⊂ V) representing the

ffected cities and damaged nodes ( V r ⊂ V) representing the dam-

ged points in the network. Demand nodes i ∈ V d correspond to lo-

ations where some demand d i for humanitarian assistance exists.

urthermore, there may be transshipment (intersection) nodes,

hich represent the intersection of two or more edges. Fig. 1 (a)

hows an example of a network before being affected by extreme
vents (original network), while Fig. 1 (b) shows the corresponding

etwork considering damaged nodes in the points where the edges

roads) were damaged. Notice that some edges can be damaged in

ore than one point. There is one depot (node 0) that is a supply

ode to be connected with the demand nodes and from which the

epair crew initially departs to repair the damaged nodes. For each

ode i ∈ V, there is a set E i ⊆ E representing the edges incident to

ode i . A damaged node j ∈ V r has a repair time δj that represents

he time the crew spends to repair the node j . A travel time τ e and

 length (distance) � e are defined for each edge e ∈ E . 

We consider a single crew available to perform the restoration

ctivities. The problem consists of determining (i) the optimal crew

cheduling to repair the damaged nodes, (ii) the paths that must

e followed by the crew between two successive damaged nodes

n the schedule, and (iii) the paths between the depot and the de-

and nodes. The damaged nodes must be repaired the first time

hey are visited by the crew, incurring in the repair time. In subse-

uent visits, the crew can use the already repaired damaged nodes

ithout incurring in a repair time. Some damaged nodes cannot

e repaired before the restoration of other damaged nodes. For in-

tance, node 9 in Fig. 1 (b) cannot be repaired directly from the

epot without the restoration of other damaged node (7, 8 or 10). 

The objective of the CSRP consists of minimizing the time that

he demand nodes remain inaccessible from the depot weighted

y their corresponding demands. The accessibility of the demand

odes influences the delivery of commodities and the evacuation

f affected people, and hence, it must be restored as soon as possi-

le. A demand node i ∈ V d is called accessible if there exists a path

hat connects this node to the depot using only undamaged and/or

epaired nodes and that is not longer than a maximum distance l i .

he maximum distance l i is based on pre-disaster conditions and

as to be greater than or equal to the shortest distance between

he depot and the demand node i . In Fig. 1 (a), for example, as-

uming a distance � = 1 in all the edges of the graph, the short-

st distance from the depot to demand node 2 is 1. Then, l 2 ≥ 1. If

 2 = 1 , only path 0–2 can be used to connect the depot with de-

and node 2. On the other hand, if l 2 = 3 , paths 0–2 and 0–3–1–2

an be used to connect the depot with demand node 2. Paths con-

ecting the depot with the demand nodes can require the restora-

ion of damaged nodes. In Fig. 1 (b), for example, if path 0–3–4 is

efined for connecting node 4 with the depot, no damaged node

ust be repaired to make node 4 accessible. In this case, the time

hat demand node 4 remain inaccessible from the depot is equal

o zero, as no damaged node is used in the path 0–3–4. On the

ther hand, if paths 0–2 and 0–5 are defined for connecting nodes

 and 5 with the depot, respectively, then damaged node 6 must

e repaired for demand node 2 to become accessible and damaged

ode 7 must be repaired for demand node 5 to become accessible.

n this case, the time that the demand nodes 2 and 5 remain inac-

essible from the depot is equal to the exact time at which nodes

 and 7 are repaired, respectively. Furthermore, repairing damaged

odes 8–10 is not necessary for connecting the depot with the de-

and nodes. However, these nodes also need to be repaired in the

ong term. To minimize the time that demand nodes remain inac-

essible from the depot, it is expected that the optimal solution to

he problem in Fig. 1 (b) considers first the restoration of damaged

odes 6 and 7 and then the restoration of nodes 8–10. 

. Literature review 

The CSRP has been tackled recently in the literature using ex-

ct methods and heuristics. Maya-Duque et al. (2016) developed a

ynamic programming (DP) algorithm to optimally solve the CSRP.

his approach is based on the gradual addition of damaged nodes

o a schedule that starts in the depot, keeping a list of states with

nformation about the elapsed time and current location of the
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Fig. 1. Example of a graph representing the CSRP. 
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crew, the unrepaired damaged nodes, and the inaccessible demand

nodes. However, the DP algorithm was able to solve to optimality

only few (small) instances of the problem. An MIP formulation was

also developed by the same authors, but they claimed that a direct

implementation of the model in a commercial solver resulted in an

intractable solution method even for small instances. Hence, they

did not report computational results of using the model to solve

the problem. Finally, because of the limitations regarding their ex-

act approaches, the authors developed a metaheuristic based on

GRASP to solve medium and large instances. Due to the heuristic

nature of the method and the lack of lower bounds, the analysis of

the quality of the solutions is compromised. 

Variants of the CSRP that integrate scheduling and routing de-

cisions have also been studied in the literature. Feng and Wang

(2003) were the first authors to develop a mathematical model in-

tegrating scheduling and routing decisions towards road restora-

tion, focusing on highway emergency rehabilitation after earth-

quakes. Different from the CSRP, they presented a multi-objective

model to maximize both the total kilometers of roads repaired

and the total number of saved lives, while minimizing the risk of

the restoration operations. This model does not include the defi-

nition of paths between depots and the demand nodes. Further-

more, the dynamic changes in the accessibility of the nodes along

the network are not taken in account. This means that the crew

cannot visit some damaged nodes before the restoration of other

damaged nodes. To incorporate the network dynamics, Yan and

Shih (2007) devised a time-space network MIP model. This for-

mulation considers copies i ′ of an original node i to represent the

state of this node over the time horizon. The model minimizes the

completion time of the restoration. They did not consider the de-

sign of paths to reach the demand nodes. To find feasible solu-

tions for the problem, the authors proposed a heuristic algorithm

that divides the originally damaged network into several smaller

networks. Each subnetwork was then solved using a commercial

solver. However, even the subproblems remain unsolvable in prac-

tical time. Therefore, in a subsequent study ( Yan & Shih, 2012 ),

the same authors implemented an ant colony system-based meta-

heuristic to solve practical instances of the problem. 

Tang, Yan, and Chang (2009) used the same idea of time-space

networks to model a stochastic version of the problem presented

in Yan and Shih (2007) . They incorporated both stochastic travel

and repair times into the problem using a two-stage stochastic

programming model. The first-stage refers to the scheduling and

routing decisions, whereas the second-stage considers alternative

routing decisions for each scenario. The model aims at minimizing

the travel and repair times plus an expected penalty value for the

modification of the routes. Small instances of the problem were

solved by a commercial optimization solver. 

Yan and Shih (2009) integrated crew scheduling and routing

with relief distribution in a bi-objective model to minimize the

completion time of the restoration, and the time due to the re-

lief distribution to all demand nodes. The bi-objective model was
educed to a single objective via the evaluation of a weighted ob-

ective function, and thus was solved by a heuristic analogously to

an and Shih (2007) . Similarly, Yan, Chu, and Shih (2014) incor-

orated rescheduling repair decisions into the problem proposed

y Yan and Shih (2007) . Basically, they considered that backup re-

air crews can be dispatched to support the regular crews when

ubsequent events after the primary extreme event cause new

amage nodes over the time horizon. An ant colony system-based

etaheuristic was used to solve practical instances of the prob-

em. Xu and Song (2015) also proposed optimizing crew schedul-

ng and routing with relief distribution but focused on minimiz-

ng the time in which relief goods arrive at the demand nodes.

he resulting problem was solved by an ant colony system-based

etaheuristic. 

Pramudita, Taniguchi, and Qureshi (2012) and Pramudita and

aniguchi (2014) integrated location decisions with crew schedul-

ng and routing decisions. They considered the problem as a vari-

nt of the undirected capacitated arc routing problem (CARP), in

hich there exists a set of blocked arcs that need to be unblocked.

dditional constraints were added to the classical CARP to limit ac-

ess to some section of the network as a result of debris-blocked

rcs. Different from the CSRP, the objective is to minimize the

ost of collecting the debris in all the damaged arcs. Furthermore,

he definition of paths to reach the demand nodes was not con-

idered by the authors. Pramudita and Taniguchi (2014) studied

he same problem by transforming the CARP into the capacitated

ehicle routing problem (CVRP). The transformation associates

locked arcs with two nodes that must be visited in sequence.

ramudita et al. (2012) and Pramudita and Taniguchi (2014) used

 tabu search metaheuristic to solve practical instances of the

roblem. 

Özdamar, Tüzün Aksu, and Ergüne ̧s (2014) proposed a multi-

bjective non-linear recursive model to minimize both the net-

ork inaccessibility and the completion time of the restoration

perations. In their model, schedule decisions are generated for

 fleet of dozers that perform the task of debris cleanup from

locked arcs. The authors developed heuristics based on priority

election rules to solve the problem. Akbari and Salman (2017b) in-

roduced the multi-vehicle synchronized arc routing problem. The

odel optimally determines the set of debris-blocked roads that

eed to be repaired and the synchronized routes for the crews

vehicles) to clear these roads in the shortest completion time.

hey proposed an MIP formulation and a relaxation-based heuris-

ic in which the routes of the crew might not be synchronized.

dditionally, they developed a constructive heuristic to obtain a

easible solution from the unsynchronized solution and a neigh-

orhood search algorithm to improve the feasible solutions. Fi-

ally, the same problem and its solution method were addressed

n Akbari and Salman (2017a) with a different objective function

onsisting of maximizing the network components connected to

he depot node. This problem differs from the CSRP in the sense

hat it considers different objective functions and multiple crews.



A. Moreno, P. Munari and D. Alem / European Journal of Operational Research 275 (2019) 16–34 19 

F  

d  

u  

v

 

r  

h  

f  

c  

b  

M  

p  

p  

g

 

p  

d  

t  

t  

t  

s  

s  

n

a  

d  

t  

r  

a  

v  

c  

f  

r  

o  

h  

o  

a  

o  

l  

m

4

 

p  

c  

t  

r  

d  

t  

m  

a  

s  

m  

S  

t  

c  

t

4

 

m  

t

Se
V
V d
V r
E
E i 
Pa

d i 
δi 

τe

� e
l i 

M

De

X i

P e

N k

Y e

V k

Z r
i 

Z d
i 

 

t  

v  

o  

d  

b  

u  

a  

t  

a

m

s  

i

 

∑
 

∑
e

 

e

 

e

 

∑
 

urthermore, it does not involve the design of paths to connect

emand nodes with a central depot. Such paths are, in practice,

sed to perform the distribution of supplies or the evacuation of

ictims. 

Notice that several studies devise heuristic/metaheuristic algo-

ithms to address the CSRP or related problems. On the other

and, the literature on exact methods is still scarce. Despite the

act some authors rely on mathematical formulations and commer-

ial solvers to solve small instances, practical instances have not

een addressed. The dynamic programming algorithm proposed by

aya-Duque et al. (2016) is the only specialized exact method pro-

osed for the CSRP, but it fails to solve even small instances of the

roblem. We are not aware of any decomposition-based exact al-

orithm proposed for the CSRP or its variants. 

In this paper, we contribute to the literature on the CSRP by

roposing a state-of-the-art exact approach based on the Benders

ecomposition and the branch-and-cut algorithm, referred to as

he branch-and-Benders-cut (BBC) method. This is a challenging

ask, since the CSRP integrates two non-trivial combinatorial op-

imization problems. The components of the proposed method are

pecialized and sharpened to take advantage of the mathematical

tructure of the CSRP. For example, the method relies on combi-

atorial cuts and lower bound functions that are able to cut off

nd set lower bounds for multiple solutions simultaneously. We

evelop efficient specialized algorithms to solve the subproblems

hat emerge from the decomposition, instead of solving their cor-

esponding classic MIP formulations via commercial solvers. We

lso propose valid inequalities that effectively accelerate the con-

ergence of the BBC approach. Furthermore, construction and lo-

al search heuristics are also used to find good initial solutions

or the method. As the proposed BBC approach is an exact algo-

ithm, the solution quality can be assessed, which is relevant not

nly from the theoretical perspective, but also in practice, as it can

elp decision-makers to rely on solutions that are known to be

ptimal or near-optimal. We could verify experimentally that our

lgorithm is efficient to solve many practical-size instances. More-

ver, we show that reasonable solutions are obtained even for very

arge-scale instances that have never been tackled before by exact

ethods. 

. Solution approach 

In this section, we present a mathematical formulation and pro-

ose the BBC algorithm. Basically, this algorithm has three main

omponents: an MIP master problem defined in Section 4.2 , op-

imality and feasibility cuts defined in Section 4.3 and separation

outines defined in Section 4.4 . The MP considers only scheduling

ecisions for the crew, while subproblems determine the paths be-

ween pairs of damaged nodes and between the depot and the de-

and nodes. The solutions of a MP are used to generate feasibility

nd optimality cuts that cut off solutions corresponding to infea-

ible schedules. A flowchart showing the interaction between the

ain components of the proposed BBC algorithm is presented in

ection 4.5 . Additionally, in Section 4.6 , we derive valid inequali-

ies to have stronger LP relaxations, and in Section 4.8 , we develop

onstruction and local search heuristics to find good feasible solu-

ions. 

.1. Mathematical modeling 

To formulate the CSRP, we closely follow the mathematical

odel mentioned in Maya-Duque et al. (2016) . The notation used

o describe the model is as follows. 

e

ts 
Set of nodes. 

 ⊂ V Set of demand nodes. 
 ⊂ V Set of damaged nodes. 

Set of arcs. 

⊆ E Set of arcs incident to node i ∈ V . 

rameters 

Demand of node i ∈ V d . 
Repair time of node i ∈ V r . 

 

Travel time on arc e ∈ E . 

 

Length (distance) of arc e ∈ E . 

Maximum distance allowed between the depot and the 
demand node i ∈ V d . 

A sufficiently large number. 

cision variables 

j = 

{ 

1 , if node j ∈ V r ∪ { 0 } is repaired immediately after node 
i ∈ V r ∪ { 0 } . 

0 , otherwise . 

i j = 

{ 

1 , if arc e ∈ E is used on the path from node i ∈ V r ∪ { 0 } 
to node j ∈ V r ∪ { 0 } . 

0 , otherwise . 

i j = 

{ 

1 , if node k ∈ V is used on the path from node i ∈ V r ∪ { 0 } 
to node j ∈ V r ∪ { 0 } . 

0 , otherwise . 

j = 

{ 

1 , if arc e ∈ E is used on the path from supply node 0 to node 

j ∈ V d . 
0 , otherwise . 

j = 

{ 

1 , if node k ∈ V is used on the path from supply node 0 to node 

j ∈ V d . 
0 , otherwise . 

 Exact time at which the damaged node i ∈ V r is repaired. 
 Exact time at which the demand node i ∈ V d becomes 

accessible. If node i is accessible at time zero, this 
variable takes value zero. 

Note that the variables X ij define the schedule of the crew, i.e.,

he sequence of damaged nodes to be repaired. They do not pro-

ide the route of the crew, as they are defined for damaged nodes

nly. The full route is obtained from variables P eij and N kij , which

etermine the arcs and nodes, respectively, to be visited in a path

etween each two consecutive damaged nodes i − j in the sched-

le of the crew. On the other hand, variables Y ej and V kj define the

rcs and nodes, respectively, to be visited in the paths between

he depot and each demand node j . These two types of variables

re not related to the crew. 

The model is formulated as follows: 

in 

∑ 

i ∈V d 
d i · Z d i . (1) 

.t. 
∑ 

j∈V r ∪{ 0 } 
X i j = 1 , ∀ i ∈ V r ∪ { 0 } , (2)

∑ 

 ∈V r ∪{ 0 } 
X i j = 1 , ∀ j ∈ V r ∪ { 0 } , (3)

 

e ∈E i 
P ei j = X i j , ∀ i ∈ V r ∪ { 0 } , j ∈ V r , (4)

 

 ∈E j 
P ei j = X i j , ∀ i ∈ V r ∪ { 0 } , j ∈ V r , (5)

∑ 

 ∈E k 
P ei j = 2 N ki j , ∀ i ∈ V r ∪ { 0 } , j ∈ V r , k ∈ V \ { i, j} , (6)

∑ 

 ∈E 0 
Y e j = 1 , ∀ j ∈ V d , (7)

 

 ∈E j 
Y e j = 1 , ∀ j ∈ V d , (8)
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∑ 

e ∈E k 
Y e j = 2 V k j , ∀ j ∈ V d , k ∈ V \ { 0 , j} , (9)

∑ 

e ∈E 
Y e j · � e ≤ l j , ∀ j ∈ V d , (10)

Z r j ≥ Z r i + 

∑ 

e ∈E 
P ei j · τe + δ j −(1 − X i j ) · M, ∀ i ∈ V r ∪ { 0 } , j ∈ V r , (11)

Z r j ≥ Z r k + (N ki j − 1) · M, ∀ i ∈ V r ∪ { 0 } , j ∈ V r , k ∈ V r , (12)

Z d i ≥ Z r j + (V ji − 1) · M, ∀ i ∈ V d , j ∈ V r , (13)

X i j ∈ { 0 , 1 } , ∀ i ∈ V r ∪ { 0 } , j ∈ V r ∪ { 0 } , (14)

P ei j , N ki j ∈ { 0 , 1 } , ∀ i ∈ V r ∪ { 0 } , j ∈ V r , k ∈ V, e ∈ E, (15)

 ei , V ki ∈ { 0 , 1 } , ∀ i ∈ V d , k ∈ V, e ∈ E, (16)

Z r i ≥ 0 , ∀ i ∈ V r ∪ { 0 } , (17)

Z d i ≥ 0 , ∀ i ∈ V d . (18)

The objective function (1) consists of minimizing the time that

the demand nodes remain inaccessible from the depot, weighted

by their corresponding demands. A demand node j ∈ V d is called

accessible if there exists a path that connects this node to the de-

pot using only undamaged and/or repaired nodes and that is not

longer than a maximum distance l j – see constraints (10) . Thus,

the accessibility time of a demand node depends on the damaged

nodes in its path from the depot and is computed in constraints

(13) . In Fig. 1 (b), for example, paths 0–6–2 and 0–7–5 can be de-

fined for connecting nodes 2 and 5 with the depot, respectively.

Thus, the times that the demand nodes 2 and 5 remain inacces-

sible from the depot are equal to the exact times at which nodes

6 and 7 are repaired, respectively. Constraints (2) and (3) specify

that each damaged node must be visited once during the sched-

ule of the crew. Constraints (4) –(6) ensure the flow conservation in

the path of the crew between damaged nodes i and j . If there is a

path between damaged nodes i and j ( X i j = 1 ), constraints (4) force

the use of an arc incident to node i in the path, while constraints

(5) force the use of an arc incident to node j in the path. Further-

more, for each node k in the path from i to j ( N ki j = 1 ), there is

one arc leaving and one arc arriving at node k considered in the

path, as imposed by constraints (6) . Similarly, constraints (7) –(9)

ensure the flow conservation in the paths from the depot to the

demand nodes. Constraints (10) prohibit the use of paths with a

distance greater than the maximum distance allowed between the

depot and the demand nodes. Notice that l j considers the distances

only, not travel or repair times. Constraints (11) define the exact

time at which the damaged nodes are repaired. For a given node j ,

this is the result of adding the time at which the predecessor node

i is repaired plus the travel time of the path from node i to node

j plus the time it takes to repair node j . These constraints also act

as subtour elimination constraints and are based on the Miller–

Tucker–Zemlin (MTZ) formulation of the traveling salesman prob-

lem (TSP) ( Miller, Tucker, & Zemlin, 1960 ), which has a number

of constraints that depends polynomially on the number of nodes.

They are different from the subtour elimination constraints origi-

nally used in the model cited by Maya-Duque et al. (2016) , which

are based on the Dantzig–Fulkerson–Johnson (DFJ) formulation of

the TSP ( Dantzig, Fulkerson, & Johnson, 1954 ) and lead to a num-

ber of constraints that is exponential in terms of the number of

nodes. To keep the model polynomial-sized, we decided to use the

 

TZ-based constraints. Constraints (12) ensure that a node k in the

ath from node i to node j must be repaired before node j ; i.e.,

amaged unrepaired nodes cannot be used in a path from node i

o node j . Constraints (13) define the exact time at which each de-

and node i become accessible, which is based on the time when

amaged nodes in the path connecting i to the depot are repaired.

inally, constraints (14) –(18) impose the domain of the decision

ariables. It is worth mentioning that variables P eij and Y ej do not

eed to be defined as binary variables in the computational imple-

entation because they naturally assume binary values if variables

 kij and V kj are defined as binaries, respectively. 

.2. Benders decomposition 

Benders decomposition is a variable partitioning technique

hose goal is to tackle problems with complicating variables

 Benders, 1962; Costa, 2005; de Sá, de Camargo, & de Miranda,

013 ). Usually, a master problem considering only the complicating

ariables is solved, then the complicating variables are temporar-

ly fixed, and one or more subproblems are solved. For the CSRP,

e identified as complicating variables the X ij variables, which de-

ne the schedule of the crew. When the scheduling decisions ( X ij )

re fixed, the remaining problem becomes a set of shortest-path

roblems, which can be efficiently solved by using specialized al-

orithms based on the well-known Dijkstra’s shortest-path algo-

ithm ( Dijkstra, 1959 ). The master problem is defined as follows: 

(MP ) min �, (19)

.t. Constraints (2) , (3) , (14) , (20)

 j ≥ R i + 1 − |V r ∪ { 0 }| · (1 − X i j ) , ∀ i ∈ V r ∪ { 0 } , j ∈ V r , (21)

≥
∑ 

i ∈V d 
d i · θi , (22)

, θi , R j ≥ 0 , ∀ i ∈ V d , j ∈ V r ∪ { 0 } . (23)

odel (19) –(23) still lacks the feasibility and optimality cuts to be

efined in Section 4.3 . Notice that constraints (11) , which act also

s subtour elimination constraints in model (1) –(18) , do not re-

ain in the MP (they go to the subproblems because of variables

 

r 
j 

and P eij ). Thus, we add the new subtour elimination constraints

21) to the MP, together with the auxiliary variables R j . Variable

i computes the exact time at which the demand node i ∈ V d be-

omes accessible, and � computes the value of the objective func-

ion. Initially, the lower bound for the � and θ i variables is zero.

hen a solution is found for the MP, feasibility or optimality cuts

re added, and they are likely to increase the lower bound of the

and/or θ i variables. We can set a lower bound for variable � di-

ectly or by using the θ i variables. Constraint (22) guarantees that

he addition of optimality cuts setting a lower bound for the vari-

bles θ i also sets a lower bound for the variable �. 

The MP determines a schedule for the crew. The feasibility of

his schedule for the original model (1) –(18) is verified in subprob-

em SP1, which obtains a set of shortest paths between consecutive

odes in the schedule of the crew: 

(SP 1) min 

∑ 

i ∈ V r 
Z r i , (24)

.t. Constraints (6) , (12) , (15) , (17) , (25)

 

e ∈E i 
P ei j = ̂

 X i j , ∀ i ∈ V r ∪ { 0 } , j ∈ V r , (26)
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 ∈E j 
P ei j = ̂

 X i j , ∀ i ∈ V r ∪ { 0 } , j ∈ V r , (27)

 

r 
j ≥ Z r i + 

∑ 

e ∈E 
P ei j · τe + ( ̂  X i j −1) · M + δ j , ∀ i ∈ V r ∪ { 0 } , j ∈ V r , (28)

n which 

̂ X i j is a solution for the MP. For each pair of consecu-

ive nodes i − j with 

̂ X i j = 1 in the schedule defined by the MP,

P1 determines the shortest path with arcs and nodes defined by

ariables P eij and N kij , respectively. Indeed, for this pair i − j, con-

traints (28) become 

 

r 
j ≥ Z r i + 

∑ 

e ∈E 
P ei j · τe + δ j 

nd hence, the objective function becomes a summation of the re-

air times and travel times on the traversed arcs. 

SP1 may be infeasible if there is no path between two nodes

 − j that uses only undamaged and/or repaired nodes. In such a

ase, the schedule ̂ X i j provided by the MP is infeasible in the orig-

nal problem (1) –(18) , and feasibility cuts must be added to the

P (see Section 4.3 ). Otherwise, the values of the variables Z r 
i 

are

sed to calculate the total cost of the schedule in subproblem SP2,

hich determines the shortest paths between the depot and the

emand nodes. It can be defined as follows: 

(SP 2) min 

∑ 

i ∈V d 
d i · Z d i , (29)

.t. Constraints (7) –(10) , (16) , (18) , (30)

 

d 
i ≥ ̂ Z r k + (V ki − 1) · M, ∀ i ∈ V d , k ∈ V r , (31)

here parameter ̂  Z r 
k 

is obtained from a solution of subproblem SP1.

ubproblem SP2 determines the shortest paths from the depot to

ach demand node i ∈ V d with a distance length less than or equal

o the maximum distance l i . Each path is composed of arcs and

odes defined by variables Y ej and V kj , respectively. The exact time

t which the demand node i ∈ V d becomes accessible is used to

enerate optimality cuts for the MP, as defined in the next section.

rom subproblem SP2, we derive only optimality cuts. If subprob-

em SP2 is infeasible, then the original problem (1) –(18) is also

nfeasible because there is no path between the depot and some

emand node i with a distance length less than or equal to the

aximum distance l i (it considers only the distance of each arc,

ot the travel times or the repair times). 

Therefore, we have decomposed the decisions of the CSRP into

hree parts: the MP, which determines the crew schedule; SP1,

hich checks whether this schedule is feasible and, if it is, obtains

rew paths between each pair of damaged nodes; and SP2, which

etermines the paths between the depot and each demand node

nd the corresponding objective costs. Note that we could have de-

ned a single subproblem by gathering subproblems SP1 and SP2

nd hence evaluated both the feasibility and cost of the MP so-

utions simultaneously. However, having separate subproblems al-

ows us to design efficient specialized algorithms, as presented in

ection 4.4 . 

.3. Combinatorial Benders cuts and lower-bounding functions 

Every time an integer solution is found by the BBC algorithm,

eparation procedures based on specialized solution methods for

ubproblems SP1 and SP2 seek violated feasibility or optimality

uts, and the corresponding combinatorial Benders cuts (feasibility

uts) or lower-bounding functions (optimality cuts) are added to

he MP. We rely on feasibility and optimality cuts based on partic-

lar characteristics of the problem and on inequalities proposed for

elated problems in the literature ( Hjorring & Holt, 1999; Laporte,
ouveaux, Hamme, & van Hamme, 2014 ). Proposition 1 states fea-

ibility cuts for the MP. 

roposition 1. Let K = (v 0 , v 1 , . . . , v (h −1) , v h , . . . , v p , . . . , v |V r | ) be an

nfeasible schedule for the crew, where v i is the ith damaged node to

e repaired and v 0 = 0 . Assume that K is obtained by solving the MP

nd corresponds to the solution ̂ X v (i −1) v i = 1 , ∀ i = 1 , . . . , |V r | . For a

iven index h > 0, let S h = { v 0 , v 1 , . . . , v (h −1) , v h } , and assume that K

s infeasible because there exists no path from node v (h −1) to node v h 
ithout using at least one damaged node not yet repaired v p , with

 > h. Hence, the following feasibility cuts are violated and can be

dded to the MP: ∑ 

 ∈ S h \{ v h } 

∑ 

j∈ S h \{ v 0 } : 
i � = j 

X i j ≤ | S h | − 2 , (32)

 

i ∈ S h 

∑ 

j∈ S h : ̂ X i j =1 

X i j ≤ | S h | − 2 . (33)

roof. Assume that there is no feasible path from node v (h −1) to

ode v h . Hence, there is at least one damaged node v p , with p > h ,

hat must be repaired before node v h (otherwise, v h cannot be

eached). Let S̄ h be any permutation of elements of set S h \ { v 0 , v h } .
very schedule containing any partial sequence K̄ = (v 0 , S̄ h , v h ) is

nfeasible because the node v p is not repaired before node v h .
hen, all the schedules that contain any partial sequence K̄ must

e avoided. Every partial sequence K̄ can be represented in the MP

y binary variables in the left-hand side of (32) , where | S h | − 1 of

hem takes a value of 1. Therefore, to avoid any sequence K̄ , it is

ecessary to restrict the left-hand side of (32) to be strictly smaller

han | S h | − 1 . The cut defined in (33) is a particular case of cut

32) to avoid any schedule with the sequence K̄ = S h . �

To illustrate Proposition 1 , consider the schedule K =
 v 0 , v 1 , v 2 , v 3 , v 4 , v 5 } = { 0 , 3 , 1 , 2, 4, 5} that is assumed to be infea-

ible because there is no path from node 1 to node 2 without using

ode 5. Then, v h = v 3 = 2 and S h = S 3 = { 0 , 3 , 1 , 2 } . The possible

ermutations of set S h \ { v 0 , v h } are S̄ 1 
h 

= { 3 , 1 } and S̄ 2 
h 

= { 1 , 3 } .
hus, all the schedules that contain the partial sequences K̄ 

1 =
 0 , 3 , 1 , 2 } and K̄ 

2 = { 0 , 1 , 3 , 2 } must be avoided. The feasibility

ut (32) is X 03 + X 01 + X 02 + X 13 + X 12 + X 23 + X 21 + X 31 + X 32 ≤ 2 ,

here sequence K̄ 

1 is represented by variables X 03 , X 31 , and X 12 

nd sequence K̄ 

2 is represented by variables X 01 , X 13 , and X 12 .

ach sequence is represented by three binary variables taking a

alue of 1, so to avoid the schedules with the infeasible sequences
¯
 

1 and K̄ 

2 , we need to force these variables to sum to less than

. The feasibility cut (33) considering only the sequence S h is

 03 + X 31 + X 12 ≤ 2 . 

Note that the cut defined in (32) avoids all schedules with a

artial sequence starting at node v 0 , ending at node v h , and con-

aining nodes from set S h \ { v 0 , v h } (in any order). Thus, it cuts

ff every schedule with any partial sequence K̄ = (v 0 , S̄ h , v h ) . Eq.

33) is a cut to avoid every schedule with a partial sequence start-

ng at node v 0 , ending at node v h , and containing nodes from set

 h (in the original order), cutting off every schedule with a partial

equence K̄ = S h . Only one of them, (32) or (33) , is necessary to

ut off the solution corresponding to K . However, the number of

olutions cut off by (32) is greater than or equal to the number of

olutions cut off by (33) . 

When a solution of the MP is feasible for the original model

1) –(18) , optimality cuts must be added to properly set the corre-

ponding cost. Proposition 2 defines optimality cuts for the vari-

ble � of the MP. 

roposition 2. Let L = (v 0 , v 1 , . . . , v (h −1) , v h ) be a feasible partial se-

uence of damaged nodes repaired by the crew corresponding to the

P solution ̂ X v (i −1) v i = 1 , ∀ i = 1 , . . . , h, where v 0 = 0 and v h is the



22 A. Moreno, P. Munari and D. Alem / European Journal of Operational Research 275 (2019) 16–34 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t  

(  

a  

c  

t  

(  

w  

f

4

 

s  

(

(  

S  

K  

t  

S  

i  

t

 

w  

t  

d  

c  

u  

I  

a  

b  

T  

u

A

I
G

S

P

O
I  

Ẑ
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n  

n  

t  
last node to be repaired to make all the demand nodes in the set V d 
accessible. An optimality cut to be added to the MP is: 

� ≥ ̂ � ·
( 

h ∑ 

i =1 

X v (i −1) v i − (h − 1) 

) 

, (34)

where ̂ � is the total cost computed in subproblem SP2. 

Proof. All the demand nodes become accessible when node v h in

the partial sequence L is repaired, with a corresponding total cost̂ �. Hence, every schedule containing the sequence L must have a

cost ̂ �. The sequence L is represented by binary variables in the

right-hand side of (34) when those h binary variables take value 1.

Then, if the partial sequence L is considered in the schedule, the

summation is equal to h , and we have the lower bound 

̂ � for vari-

able � activated in the MP, as � ≥ ̂ � · (h − (h − 1)) . Otherwise, if

the partial sequence L is not considered in the schedule, there are

p < h variables taking a value of 1 in the right-hand side of (34) ,

and the lower bound 

̂ � cannot be activated in the MP, as we have

� ≥ ̂ �(p − (h − 1)) with p < h . �

Cut (34) sets a lower bound for variable � only.

Proposition 3 defines optimality cuts based on variables θi , ∀ i ∈ V d .

Proposition 3. Let L k = (v k 
0 
, v k 

1 
, . . . , v k 

(h −1) 
, v k 

h 
) be a feasible partial

sequence of damaged nodes repaired by the crew corresponding to the

MP solution ̂ X v k 
(i −1) 

v k 
i 

= 1 , ∀ i = 1 , . . . , h, where v k 
0 

= 0 and v k 
h 

is the

last node repaired to make the demand node k ∈ V d accessible. Let

P k 
h 

= { v k 
1 
, . . . , v k 

(h −1) 
} . Let P̄ k 

h 
be any permutation of elements of set P k

h 

and L̄ k = (v k 
0 
, P̄ k 

h 
, v k 

h 
) . Then, the following optimality multi-cuts can be

added to the MP: 

θk ≥ ˜ θk ·

⎛ ⎜ ⎜ ⎝ 

∑ 

i ∈ P k 
h 

(X 0 i + X i (v k 
h 
) ) + 

∑ 

i ∈ P k 
h 

∑ 

j∈ P k 
h 

: 

i � = j 

X i j − | P k h | 

⎞ ⎟ ⎟ ⎠ 

, ∀ k ∈ V d , (35)

θk ≥ ̂ θk ·

⎛ ⎜ ⎜ ⎝ 

X 0 v 1 + X (v k 
h −1 

)(v k 
h 
) + 

∑ 

i ∈ P k 
h 

∑ 

j∈ P k 
h 

: ̂ X i j =1 

X i j − | P k h | 

⎞ ⎟ ⎟ ⎠ 

, ∀ k ∈ V d , (36)

where ̂ θk = ̂

 Z d 
k 
, ∀ k ∈ V d , is computed in subproblem SP2 and ˜ θk is a

lower bound for variable θ k when any partial sequence L̄ k is consid-

ered in the schedule. ˜ θk can be computed as: ˜ θk = 

∑ 

j∈ P k 
h 
∪{ v k 

h 
} 
δ j + 

∑ 

j∈ P k 
h 
∪{ v k 

h 
} 
t ∗j , (37)

 

∗
j = min 

i ∈ P k 
h 
∪{ v 0 } : 

i � = j 

{ t i j } , ∀ j ∈ P k h ∪ { v k h } , (38)

where δj is the repair time of node j and t ij is the cost of the shortest

path from node i to node j considering that all nodes are repaired. 

Proof. Cut (36) is a particular case of (35) to set the cost ̂ θk for

variables θ k corresponding to the original schedule L k . For every

partial sequence L̄ k = (v k 
0 
, P̄ k 

h 
, v k 

h 
) , the demand node k becomes ac-

cessible when node v k 
h 

is repaired. For a given L̄ k , we do not have

the actual cost for variables θ k . Instead, we have a valid lower

bound 

˜ θk . In the calculation of ˜ θk , we consider that in any se-

quence L̄ k , all the nodes of set P k 
h 

must be repaired, and then

the total repair time ( 
∑ 

j∈ P k 
h 
∪{ v k 

h 
} δ j ) must be computed. Addition-

ally, the crew must arrive at all the damaged nodes in the se-

quence L̄ k , and then we compute a lower bound using the mini-

mum travel time to arrive at each node j ∈ L̄ k from any other node

i ∈ L̄ k ( 
∑ 

j∈ P k 
h 
∪{ v k 

h 
} t ∗j ) . As a result, ˜ θk must be less than or equal to

the actual accessibility time ̂ θ . �
k 
The optimality cut (34) sets a lower bound (actual cost) for

he total cost � for any schedule with the partial sequence L . Cut

36) is similar to (34) but sets a lower bound (actual cost) for vari-

bles θk , ∀ k ∈ V d , which in turn sets a lower bound for the total

ost �. Only one of them, either (34) or (36) , is necessary to set

he actual total cost for every schedule with partial sequence L . Cut

35) sets a valid (underestimated) lower bound for any schedule

ith any partial sequences L̄ k , ∀ k ∈ V d , so it sets a lower bound

or more solutions in the MP than cuts (34) and (36) . 

.4. Separation procedures 

Both subproblems SP1 and SP2 can be efficiently solved via

pecialized methods based on Dijkstra’s shortest-path algorithm

 Dijkstra, 1959 ) instead of using the models (24) –(28) and (29) –

31) , respectively. A pseudo-code of the method proposed to solve

P1 is outlined in Algorithm 1 . The graph G = (V, E ) , a schedule

 = (v 0 , v 1 , . . . , v i , . . . , v |V r | ) , the repair times δj , ∀ j ∈ V r , and the

ravel times τ e , ∀ e ∈ E are used as the input of the algorithm. If

P1 is feasible for the schedule K , then the output of the algorithm

s given by the optimal values for variables Z r 
i 
, ∀ i ∈ V r . Otherwise,

he algorithm indicates that the subproblem is infeasible. 

Algorithm 1 starts by setting the cost C e of each arc in the net-

ork as ∞ if the arc e is incident to a damaged node; otherwise,

his cost is set as τ e (lines 1 and 2). Then, iteratively and for each

amaged node v j ∈ K \ { v 0 } , the cost C e of each arc e ∈ E v j (i.e., in-

ident to v j ) is reset as τe + δv j (line 5), and Dijkstra’s algorithm is

sed to find the shortest path between nodes v j−1 and v j (line 6).

f a path between nodes v j−1 and v j exists without using a dam-

ged node (that was not repaired yet), the cost C of the path must

e less than ∞ , and the value of variable Z r v j is updated (line 8).

he cost C e of each arc incident to the damaged node v j is also

pdated, as this node has been repaired (line 9). 

lgorithm 1 Algorithm for solving SP1. 

nput: 
raph G = (V, E ) ; 

cheduling solution K = (v 0 , v 1 , . . . , v j , . . . , v |V r | ) ; 
arameters δ j , ∀ j ∈ V r , and τe , ∀ e ∈ E; 

utput: 
f SP1 is feasible, return “Feasible SP1” and save optimal values
 

 

r 
j 
, ∀ j ∈ V r ; 

f SP1 is infeasible, return “Infeasible SP1”; 

1: C e := τe , ∀ e ∈ E; 

2: C e := ∞ , ∀ e ∈ E j , j ∈ V r ; 
3: ̂ Z r 

j 
:= 0 , ∀ j ∈ V r ; 

4: for j = 1 to |V r | do 

5: C e := τe + δv j , ∀ e ∈ E v j ; 
6: Find the cost C of the shortest path from node v j−1 to v j ; 
7: if C < ∞ then 

8: ̂ Z r v j := ̂

 Z r v j−1 
+ C; 

9: C e := τe , ∀ e ∈ E v j : e / ∈ 

⋃ |V r | 
i = j+1 

E v i ; 

10: C e := ∞ , ∀ e ∈ E v j : e ∈ 

⋃ |V r | 
i = j+1 

E v i ; 

11: else 

12: return “Infeasible SP1”; 

13: end if 

14: end for 

15: return “Feasible SP1”; 

It is important to emphasize that the arcs incident to damaged

odes not yet repaired have cost ∞ . Thus, if an arc incident to

ode v j is also incident to another damaged node not yet repaired,

hen that arc must continue with cost ∞ (line 10). If there is no
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Fig. 2. Example of the variation in arc costs in Algorithm 1 . 
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ath between nodes v j−1 and v j without using a not yet repaired

amaged node (i.e. C = ∞ ), then the algorithm terminates and re-

urns that SP1 is infeasible (line 12). 

Fig. 2 shows an example of the variation in the cost C e in

lgorithm 1 for a network with two damaged nodes, crew sched-

le K = (v 0 , v 1 , v 2 ) , τe = 1 and δ j = 2 , for all e ∈ E and i ∈ V r . Ini-

ially, the cost C e of each arc incident to damaged nodes v 1 and

 2 is equal to ∞ . In the first iteration, the cost of each arc inci-

ent to node v 1 is then reset to C e = τe + δv 1 = 3 and the Dijkstra’s

lgorithm finds the shortest path between nodes v 0 and v 1 . Once

ode v 1 is repaired, the cost of each arc incident to node v 1 is up-

ated to C e = τe = 1 . In the second iteration, the cost of each arc

ncident to node v 2 becomes C e = τe + δv j = 3 and Dijkstra’s algo-

ithm is now used to find the shortest path between nodes v 1 and

 2 . Finally, after all nodes have been repaired, the cost of each arc

ecomes C e = τe = 1 . 

An iterative solution approach based on solving a sequence of

hortest-path problems can be used for solving subproblem SP2 as

ell. Recall that the goal of this subproblem is to determine the

ime at which affected areas become accessible. A node is accessi-

le if there is a path from the depot to this node using only un-

amaged and/or repaired nodes and if the length of this path is

o longer than a maximum distance l i . If it is possible to access a

emand node i ∈ V d without using only undamaged nodes, then it

ecomes accessible at time ̂  Z d 
i 

= 0 . Otherwise, let j ∈ V r be the last

amaged node that was repaired before i becomes accessible at

xact time ̂ Z r 
j 
. Then, ̂ Z d 

i 
= ̂

 Z r 
j 
. Notice that in subproblem SP2, given

ny two demand nodes i 1 , i 2 , the shortest path determined from

he depot to i 1 is independent of the path determined from the

epot to i 2 . Hence, SP2 can be decomposed into |V d | independent

ubproblems. 

Algorithm 2 presents the pseudo-code of the proposed

pproach. The graph G = (V, E ) , a schedule K =
(v 0 , v 1 , . . . , v i , . . . , v |V r | ) , the corresponding values of variables

 

r 
i 

provided by the SP1, and the parameters � e , ∀ e ∈ E; l i , ∀ i ∈ V d ;
nd d i , ∀ i ∈ V d are considered the input of the algorithm. Initially,

he cost C e of each arc in the network is set as � e (line 1), the

ctual length (distance) of the arc. Iteratively, for each damaged

ode v j ∈ K \ { v 0 } , the algorithm sets the cost of each arc incident

o v j as ∞ (line 4) starting with the last damaged node (v |V r | )
n the schedule K . Then, for each demand node i ∈ V d (line 5),

ijkstra’s algorithm is used to find the shortest path from the

epot to this node (line 6). If the cost C i to reach this demand

ode is larger than the maximum allowed distance l i (line 7), then

he node v j is necessary to find a path with cost smaller than the

aximum distance l i , and hence, the time instant ̂  Z d 
i 

in which the
n

emand node i becomes accessible is set as ̂ Z r v j (line 8). Note that

e update ̂ Z d 
i 

only if it was not updated in previous iterations;

hus, ̂ Z d 
i 

is equal to the largest repair time of the damaged nodes

isited in the path from the depot to node i . Finally, the total cost̂ is computed (line 12). Recall that subproblem SP2 is always

easible if the original problem (1) –(18) is feasible. 

Fig. 3 shows an example of the variation in cost C e in

lgorithm 2 Algorithm for solving the SP2. 

nput: 
raph G = (V, E ) ; 

cheduling solution K = (v 0 , v 1 , . . . , v j , . . . , v |V r | ) ; 
ime ̂  Z r 

i 
at which damaged node i ∈ V r is repaired; 

arameters � e , ∀ e ∈ E , l i , ∀ i ∈ V d and d i , ∀ i ∈ V d ; 
utput: 
ime ̂  Z d 

i 
at which the demand node i ∈ V d becomes accessible; 

otal cost ̂ �; 

1: C e := � e , ∀ e ∈ E; 

2: ̂ Z d 
i 

:= 0 , ∀ i ∈ V d ; 
3: for j = |V r | to 1 do 

4: C e := ∞ , ∀ e ∈ E v j ; 
5: for i = 1 to |V d | do 

6: Find the cost C i of the shortest path from the depot to

the demand node i ; 

7: if C i > l i and ̂

 Z d 
i 

= 0 then 

8: ̂ Z d 
i 

:= ̂

 Z r v j ; 

9: end if 

10: end for 

11: end for 

12: Compute total cost ̂ � := 

∑ 

i ∈V d d i · ̂ Z d 
i 

; 

lgorithm 2 for a network with two damaged nodes, K =
(v 0 , v 1 , v 2 ) and � e = 1 , ∀ e ∈ E . In the first iteration, the cost of each

rc incident to the last damaged node v 2 in the schedule is set

o C e = ∞ , and Dijkstra’s algorithm finds the shortest paths be-

ween node v 0 and each demand node i ∈ V d . If the cost C i of the

ath between v 0 and the demand node i is larger than l i , then the

ode v 2 is necessary to find a path with length smaller than l i ,

nd 

̂ Z d 
i 

= ̂

 Z r v 2 . In the second iteration, the cost of each arc incident

o the damaged node v 1 is updated with C e = ∞ , and the shortest

aths between node v 0 and demand nodes i ∈ V d are found again.

n this case, if it is not possible to find a path for a demand node i

ith a cost C i less than l i , it needs either the node v 1 or v 2 in the

ath. Then, the time of accessibility ̂ Z d 
i 

is equal to ̂ Z r v 1 if this was

ot updated in the past iteration with ̂

 Z r v . 

2 
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Fig. 3. Example of the variation in arc costs in Algorithm 2 . 

Fig. 4. Flowchart illustrating how the separation routines are used in a given node i of the BBC method. 
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4.5. Branch-and-Benders-cut 

In the classical Benders decomposition, the MP and the sub-

problems are solved iteratively in an alternating sequence. At each

iteration, the MP is solved to optimality by an MIP solver, and a

considerable time may be spent revisiting candidate solutions that

have been eliminated in previous iterations ( Rahmaniani, Crainic,

Gendreau, & Rei, 2017 ). On the other hand, in the BBC algorithm, a

single search tree is built instead, and the cuts are generated inside

the tree using separation routines that seek violated feasibility or

optimality cuts ( Errico et al., 2017 ). 

Fig. 4 shows a flowchart of the BBC method focusing on how

the separation routines are used at each node of the branch-and-

bound tree. At each node i , we solve the linear relaxation of the

current MP, denoted by LP i . If the LP i is infeasible or the objec-

tive value of the LP i solution (OF i ) is higher than or equal to the

objective value of the current incumbent solution, then node i is

pruned. Otherwise, integrality constraints are checked, and if the

LP i solution is not integer feasible, then branching is performed.

Every time the LP i solution is integer feasible, we call the separa-

tion routines of the subproblem. First, we solve SP1 and, if SP1 is

infeasible, add new feasibility cuts to the MP. If no feasibility cut is

obtained, then we solve SP2 to obtain an optimality cut for the MP.
 n  
f no feasibility or optimality cuts are obtained, then the LP i solu-

ion is feasible for the original problem (1) –(18) and is set as the

ew incumbent solution. Otherwise, the MP has been modified, LP i 
ust be resolved, and the described steps are applied again. It is

orth mentioning that automatized cuts (for example, Gomory’s

uts) and/or heuristics (for example, the relaxation induced neigh-

orhood search (RINS) heuristic) available in commercial solvers

an be used at each node of the branch-and-bound tree as well,

lthough they are not included in Fig. 4 . 

.6. Valid inequalities 

The proposed BBC method also relies on valid inequalities,

hich are added to the MP and help improve the lower bounds

rovided by its linear relaxation. The first set of inequalities par-

ially adds information regarding the relation between variables

i and R j . To define the valid inequalities, we first determine the

hortest path between the depot and each demand node i ∈ V d . For

ach demand node i , we identify the damaged nodes that are used

n a shortest path from the depot to this node. Then, we forbid the

se of such damaged nodes in the paths and look for a new short-

st path from the depot to the same node i again. If a damaged

ode j is forbidden and a path with distance less than l cannot be
i 
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Fig. 5. Example of a reduction of a damaged network. 
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ound for node i , then we have identified that the damaged node j

s necessary to connect the demand node i with the depot. In such

ase, the accessibility time of node i depends on the repair time of

ode j and hence we obtain the following valid inequality: 

i ≥ R j , ∀ i ∈ V d , j ∈ Q i , (39)

n which Q i is the set of damaged nodes that must be used to

ccess the demand node i with a distance less than l i . Recall that R j 
as defined as a decision variable of the MP and denotes a lower

ound for the exact time at which the node j is repaired in the

chedule defined by the variables X ij . Hence, we replace constraints

21) with: 

 j ≥ R i + t i j + δ j − M · (1 − X i j ) , ∀ i ∈ V r ∪ { 0 } , j ∈ V r , (40)

here t ij is the minimum time to travel from node i to node j

hen no nodes are damaged, which is easily computed using Dijk-

tra’s algorithm. 

Let P ⊂ V r be the subset of damaged nodes that cannot be

epaired directly from the depot because they are not accessible

ithout the restoration of other nodes. Using this set, we can de-

ne the following valid inequality: 
 

j∈P 
X 0 j ≤ 0 . (41) 

t is also possible to identify the demand nodes that need the re-

air of at least one damaged node to become accessible. For each

emand node, the lower bound for the time instant that it be-

omes accessible is the travel time plus the repair time of the first

ode repaired by the crew from the depot. Then, the valid inequal-

ty is given by: 

i ≥
∑ 

j∈V r 
(t 0 j + δ j ) · X 0 j , ∀ i ∈ S, (42)

here S is the subset of demand nodes that require the restoration

f at least one damaged node to guarantee they become accessible.

We also propose valid inequalities based on the reduction of

he original damaged network of the problem. Let L ⊆ V r be a sub-

et of the damaged nodes and F ⊆ V d be a subset of the demand

odes in the original graph G . We define G 

LF as the subgraph ob-

ained from G by deleting all the damaged nodes that are not in

 and transforming all the demand nodes that do not belong to

 into transshipment nodes. For instance, consider the graph G

epresented in Fig. 1 (b) with V r = { 6 , 7 , 8 , 9 , 10 } and V d = { 2 , 4 , 5 } .
or L = { 6 , 9 , 10 } and F = { 2 , 5 } , the graph G 

LF is represented in

ig. 5 (a). To obtain G 

LF , we removed all the damaged nodes in

 

r \ L from G and transformed the demand nodes in V d \ F into

ransshipment nodes. 

We can further reduce the number of nodes in G 

LF by removing

ransshipment nodes that are not directly connected to damaged

odes. For each node i removed from G 

LF , we delete the arcs ad-

acent to this node and create new arcs connecting each pair of

odes j and k that were neighbors of i in G 

LF , such that j � = k . The

ost c jk of the new arc j − k is set as c jk = c ji + c ik . The resulting
raph, denoted by Ḡ 

LF , is hereafter called as the LF -reduction of G .

ig. 5 (b) illustrates the graph Ḡ 

LF obtained from the LF -reduction

f graph G given in Fig. 1 (b). After obtaining the subgraph G 

LF pre-

ented in Fig. 5 (a), we obtain Ḡ 

LF by deleting node 1 from G 

LF , as it

as not directly connected to any damaged node. Then, we deleted

rcs A1–A3, as they were adjacent to node 1, and created arcs A5–

7. Notice that either arc A4 or A7 is redundant and hence we can

elete the one with the largest cost. 

From a feasible solution of the CSRP defined using Ḡ 

LF , we can

erive valid inequalities for the original problem, as pointed out in

roposition 4 . 

roposition 4. Given L ⊆ V r and F ⊆ V d , let K 

Ḡ LF 
be an optimal so-

ution of the CSRP defined using the LF-reduction Ḡ 

LF of the original

raph G. Let ̂ �Ḡ LF 
be the optimal value and ̂ θ Ḡ LF 

i 
be the value of the

ariable Z d 
i 

in the optimal solution K 

Ḡ LF 
, for all i ∈ F. Then, the follow-

ng inequalities are valid for the MP of the original CSRP defined using

he graph G: ∑ 

 ∈ F : d i ·̂ θ Ḡ LF 

i 
> 0 

d i · θi ≥ ̂ �Ḡ LF 

, (43) 

≥ ̂ �Ḡ LF + 

∑ 

i ∈ F : d i ·̂ θ Ḡ LF 

i 
=0 

d i · θi + 

∑ 

i ∈V d \ F 
d i · θi . (44)

roof. Valid inequality (43) is proved by contradiction. Assume

hat there is a solution K 

G of the original CSRP ( i.e. , using the orig-

nal graph G ) such that ∑ 

 ∈ F : d i ·̂ θ Ḡ LF 

i 
> 0 

d i · ̂ θG 
i < 

̂ �Ḡ LF 

, 

here ̂ θG 
i 

is the value of variable Z d 
i 

in the solution K 

G . Since L ⊆
 

r , graph Ḡ 

LF have the same or less damaged nodes than graph G .

ence, a solution for the CSRP defined using Ḡ 

LF exists with 

̂ θ Ḡ LF 

i 
≤̂ G 

i 
, ∀ i ∈ F . Then, ∑ 

 ∈ F : d i ·̂ θ Ḡ LF 

i 
> 0 

d i · ̂ θ Ḡ LF 

i ≤
∑ 

i ∈ F : d i ·̂ θ Ḡ LF 

i 
> 0 

d i · ̂ θG 
i < 

̂ �Ḡ LF 

, 

hich is a contradiction because ̂ �Ḡ LF 
is the value of an optimal

olution of the CSRP defined using Ḡ 

LF . Notice that valid inequality

43) remains valid if ̂ �Ḡ LF 
is a lower bound for the value of the

ptimal solution related to graph Ḡ 

LF . 

For inequality (44) , notice that from constraint (22) of the MP,

e have 

≥
∑ 

i ∈V d 
d i · θi = 

∑ 

i ∈ F 
d i · θi + 

∑ 

i ∈V d \ F 
d i · θi = 

∑ 

i ∈ F : d i ·̂ θG LF 

i 
> 0 

d i · θi 

+ 

∑ 

i ∈ F : d i ·̂ θG LF 

i 
=0 

d i · θi + 

∑ 

i ∈V d \ F 
d i · θi . 
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Then, using valid inequality (43) , we obtain 

� ≥
∑ 

i ∈V d 
d i · θi ≥ ̂ �G LF + 

∑ 

i ∈ F : d i ·̂ θG LF 

i 
=0 

d i · θi + 

∑ 

i ∈V d \ F 
d i · θi , 

which proves the valid inequality (44) . �

Valid inequalities (43) and (44) can be useful when the value

(or a lower bound for the value) of the optimal solution of the

CSRP defined using the LF -reduction Ḡ 

LF is trivial or can be eas-

ily derived. The separation procedure of these valid inequalities is

detailed in the following subsection. 

4.7. Graph reduction (GR) strategy 

Based on Proposition 4 , we propose a Graph Reduction (GR)

strategy to obtain the LF -reduction of a graph G , as outlined in

Algorithm 3 . Basically, we create subgraphs Ḡ 

LF using a feasible

Algorithm 3 Graph reduction strategy to derive valid inequalities

(43) and (44) . 

Input: 
Graph G = (V, E ) ; 

Sequences L = (v 0 , . . . , v i , . . . , v h ) and F = (u 0 , . . . , u i , . . . , u |V d | ) ; 
Positive integer numbers n 1 ≤ h and n 2 ≤ |V d | ; 
Output: 
Valid inequalities of type (43), (44); 

1: for p = 0 to P 1 − 1 do 

2: for f = 0 to P 2 − 1 do 

3: Generate subgraph Ḡ 

L p F f ; 

4: Solve the CSRP defined using subgraph Ḡ 

L p F f ; 

5: Derive the valid inequalities (43), (44) from the solution

obtained using Ḡ 

L p F f ; 

6: end for 

7: end for 

8: Add the valid inequalities (43), (44) to the MP. 

solution of the original CSRP ( i.e. , using graph G ). This feasible

solution can be quickly obtained using a heuristic, for example

(see Section 4.8 ). Then, we determine the LF -reduction Ḡ 

LF , solve

the CSRP defined using this subgraph and check if there are vio-

lated valid inequalities of type (43) and (44) to be added to the

MP of the original CSRP. The idea is to generate sufficiently small

subgraphs Ḡ 

LF , so that the corresponding (reduced) CSRP can be

quickly solved. 

Let L = (v 0 , . . . , v i , . . . , v h ) be a feasible partial sequence of dam-

aged nodes repaired by the crew, where v i is the i th damaged node

repaired by the crew and v h is the last damaged node repaired in

order to make all the demand nodes in the set V d accessible. For a

given positive integer number n 1 ≤ h , we partition the set of nodes

in the partial schedule L into P 1 = 1 + 

⌊ 

h −1 
n 1 

⌋ 

sets. The sets are la-

beled from 0 to P 1 − 1 , where L p = { v (1+ n 1 ·p) , . . . , v (n 1 + n 1 ·p) } , ∀ p =
0 , . . . , P 1 − 2 , and L P 1 −1 = { v (1+ n 1 ·(P 1 −1)) , . . . , v h } . Similarly, let F =
(u 0 , . . . , u i , . . . , u |V d | ) be the sequence of demand nodes con-

nected to the depot when the damaged nodes are repaired

according to sequence L , where u i is the i th demand node

that becomes accessible. Given a positive integer number n 2 ≤
|V d | , we create a partition of the nodes in F given by

P 2 = 1 + 

⌊ |V d |−1 
n 2 

⌋ 

sets. The sets are labeled from 0 to P 2 −
1 , where F f = { u (1+ n 2 · f ) , . . . , u (n 2 + n 2 · f ) } , ∀ f = 0 , . . . , P 2 − 2 , and

F P 2 −1 = { v (1+ n 2 ·(P 2 −1)) , . . . , v |V d | } . Then, for each p = 0 , . . . , P 1 − 1

and f = 0 , . . . , P 2 − 1 we use sets L p and L f to obtain the LF -

reduction Ḡ 

L p F f and solve the corresponding (reduced) CSRP to

generate valid inequalities (43) and (44) . 
Notice that we are not using an arbitrary selection of damaged

odes to generate the subgraphs Ḡ 

L p F f , but a feasible sequence L .

his sequence can be obtained, for example, by using a heuris-

ic able to quickly define a good sequence of damaged nodes to

e repaired. This way, we group in a same subgraph, the dam-

ged nodes that are likely to be repaired sequentially in the so-

ution of the original problem (associated with graph G ). Also, no-

ice that we do not consider all the damaged nodes but only those

nough to make the demand nodes accessible. Similarly, we group

n a same subgraph, the demand nodes that are likely to require

he restoration of common damaged nodes to become connected

o the depot. 

.8. Construction and local search heuristics 

In this section, we use a construction heuristic and two local

earch heuristics with the aim of finding good feasible solutions

f the CSRP. The feasible solutions are used as initial incumbent

olutions in the BBC algorithm. 

.8.1. Construction heuristic 

The crew scheduling decision can be modeled as a traveling

alesman problem (TSP) in which the cities to be visited are the

amaged nodes. A simple construction heuristic for this problem

s a greedy algorithm that makes a locally optimal choice at each

teration in an attempt to find a global optimum. The proposed

ethod starts at the depot and, at each iteration, inserts at the end

f the schedule a node that is not in the schedule yet and has the

inimum travel time (when no nodes are damaged) to the last in-

erted node. A node insertion is feasible if this node can be visited

ithout using a node that was not already repaired. Only feasible

nsertions can be selected at each iteration, and as a consequence,

t always generates a feasible schedule. The construction heuristic

an also generate feasible random solutions if we insert at the end

f the schedule a randomly selected node and not the one with

he minimum travel time to the last inserted node. 

.8.2. Local search heuristics 

We propose two local search operators with the aim of im-

roving a feasible schedule generated by the construction heuristic.

he first local search operator ( swap) exchanges the positions of

wo damaged nodes in the schedule. The second local search op-

rator is a pairwise exchange (2- opt ) that involves removing two

dges and replacing them with two different edges that reconnect

he fragments created. Let W 

n 
K 

be the set of all possible solutions

neighbors) obtained by applying the operator n in the schedule K ,

here n ∈ { swap, 2 - opt} . Let �K be the cost of the schedule K . Let̂ 

 i be the i th element of set W 

n 
K 

. The local search heuristic based

n the two operators is outlined in Algorithm 4 . We have a feasi-

le schedule as the input and a locally optimal solution provided

y the heuristic as the output. We use subproblems SP1 and SP2

o evaluate the feasibility (line 10) and cost (line 12) of the sched-

le created when the operators are applied. When a solution better

han the current one is found, the local search process is restarted.

urthermore, when a set W 

n 
K 

is fully explored, we restart the algo-

ithm from a random solution (line 28). The algorithm terminates

hen no improvement is found for the last randomly generated

olution. 

. Computational experiments 

In this section, we evaluate the performance of the proposed

olution approach using instances from the literature. All the algo-

ithms were implemented in C ++ programming language. The BBC

ethod was implemented on top of the IBM CPLEX Optimization

olver 12.7 using the Concert Technology library. We implemented
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Algorithm 4 Local search heuristic using the operator n ∈ 

{ swap, 2 - opt} . 
Input: 
Schedule K = (v 0 , v 1 , . . . , v j , . . . , v |V r | ) ; Cost �K of scheduling K; 

Output: 
Schedule K 

∗ = (v ∗0 , v 
∗
1 , . . . , v 

∗
j 
, . . . , v ∗|V r | ) ; 

1: �K ∗ := �
̂ K i ; K 

∗ := K; 

2: Determine set W 

n 
K 

; 

3: improvement_global := 1; 

4: while improvement_global = 1 do 

5: improvement_global := 0; improvement_local := 1; 

6: while improvement_local = 1 do 

7: i := 1; 

8: improvement_local := 0; 

9: while i ≤ | W 

n 
K 
| do 

10: Evaluate feasibility of schedule ̂ K i by solving 

subproblem SP1; 

11: if schedule ̂ K i is feasible then 

12: Calculate cost �
̂ K i of schedule ̂ K i by solving 

subproblem SP2; 

13: if �
̂ K i < �K then 

14: �K := �
̂ K i ; K := ̂

 K i ; 

15: i := | W 

n 
K 
| + 1 ; 

16: Determine new set W 

n 
K 

; 

17: improvement_local := 1; 

18: if �
̂ K < �K ∗ then 

19: �K ∗ := �
̂ K ; K 

∗ := K; 

20: improvement_global := 1; 

21: end if 

22: end if 

23: end if 

24: i := i + 1 ; 

25: end while 

26: end while 

27: if improvement_global = 1 then 

28: Find a new random solution K with the construction 

heuristic; 

29: Determine the new set W 

n 
K 

; 

30: end if 

31: end while 
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he specialized algorithms to solve subproblems SP1 and SP2 and

he heuristics according to their descriptions in Sections 4.4 and

.8 . All cuts and valid inequalities are added to problem using the

allback procedures available in the Concert Technology library.

he experiments were run on a Linux PC with a CPU Intel Core i7

.4 gigahertz and 16.0 gigabytes of memory using a single thread.

he stopping criteria was either the elapsed time exceeding the

ime limit of 3600 seconds or the optimality gap being smaller

han 10 −4 . All the remaining parameters of CPLEX were kept at

heir default values. 

.1. Instance description 

We carried out computational experiments using two types of

heoretical instances: S1, which is composed of small instances,

nd S2, which is composed of medium and large instances, as pre-

ented by Maya-Duque et al. (2016) . As described by the authors,

hey generated networks with different numbers of nodes and arcs

ased on the instance generator proposed by Klingman, Napier,

nd Stutz (1974) . Table 1 shows the characteristics of the set of

nstances. The type (S1 or S2), network name (class), number of

emand nodes, and the total number of nodes and arcs in the orig-

nal network can be seen in columns 1–5 of Table 1 , respectively.
or each original network, one class of instances was generated by

arying two parameters, namely, α and β . Parameter α defines the

ercentage of damaged arcs in the network. Parameter β specifies

he maximum tolerable percentage by which the paths connecting

emand nodes to the depot can increase in relation to the shortest

aths in the network when no damaged node exists. For example,

= 50% indicates that half of the arcs of the original network were

amaged, and β = 50% indicates that the maximum distance l i for

he paths between the depot and the demand node i is 1.5 times

he length of the shortest path between the depot and the node i

hen no damaged node exists. Columns 6 and 7 of Table 1 show

he values of α and β , respectively. 

For each damaged arc in the original network, one or more

amaged nodes are added in the middle of the arc. Therefore, the

otal numbers of nodes and arcs in the instance depend on the

arameter α. For example, the original network in Fig. 1 (a) with

 nodes and 9 arcs is transformed into the damaged network in

ig. 1 (b) with 10 nodes and 14 arcs. In the table, original network

 with 25 nodes and 40 arcs is transformed into a damaged net-

ork with 27 nodes and 42 arcs when α = 5% (the 2 damaged

rcs are converted into 2 damaged nodes) and into a damaged net-

ork with 45 nodes and 60 arcs when α = 50% (20 new damaged

odes). Thus, damaged networks generated from original network

 have 27–45 nodes and 40–60 arcs. Columns 8 and 9 show the

otal number of nodes and arcs in the damaged networks. By com-

ining the values of α and β for original network 1, for example,

0 instances were generated. For original network 16, the values

f α = 5% , 25% , 50% were combined with β = 5% , 10% to form 6

nstances, while the values of α = 10% , 30% were combined with

= 25% , 50% to form 4 instances. For networks 1–15, the number

f instances generated is 20. For networks 16–39, the number of

nstances generated is 10. 

It is worth mentioning that some of the large instances in group

2 are actually much larger than the practical instances we typi-

ally find in real-world situations. Feng and Wang (2003) , for ex-

mple, considered a real network with 10 damaged points and

ess than 100 total nodes. Yan and Shih (20 07, 20 09) also consid-

red real networks with less than 100 nodes but with 24 damaged

oints. Similarly, Xu and Song (2015) considered a real case with

6 damaged nodes and not more than 100 total nodes. Pramudita

nd Taniguchi (2014) considered a larger real damaged network

ith 98 damaged points (blocked arcs) and 198 total nodes. Finally,

kbari and Salman (2017a) considered one of the largest practi-

al cases in the literature, involving networks with 240 damaged

oints, 349 nodes and 689 arcs. Note that we are considering in-

tances with up to 312 damaged nodes, 712 total nodes and 937

otal arcs. 

.2. Description of experiments 

In this section, we present a description of the computational

xperiments. Table 2 presents the combination and stopping cri-

eria of eleven proposed solution strategies, in which ET refers to

lapsed time and TL to the total time limit. For instance, H3 is the

euristic strategy that uses first the construction heuristic, then

he local search 2 opt , and finally the local search swap, either with

topping criteria given by time limit or a locally optimal solution

ound. The first four solution strategies (H1–H4) use only the con-

truction and local search heuristics presented in Section 4.8 . The

ollowing five strategies (BBC1–BBC5) are variants of the branch-

nd-Benders-cut (BBC) algorithm that use different combinations

f the cuts presented in Section 4.3 and some of the valid inequal-

ties presented in Section 4.6 . The same separation algorithms are

sed in all the BBC strategies to identify the feasibility and cost of

 scheduling solution of the MP. Then, we enumerate and add in-

qualities to the MP according to the type of cuts used in each BBC
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Table 1 

Set of instances. 

Network Demand Original network Damaged network Total 

Type (class) nodes nodes arcs Values for α (%) Values for β (%) Nodes Arcs instances 

S1 1 19 25 40 5, 10, 25, 30, 50 5, 10, 25, 50 27–45 42–60 20 

S1 2 19 25 37 5, 10, 25, 30, 50 5, 10, 25, 50 26–43 38–55 20 

S1 3 19 25 39 5, 10, 25, 30, 50 5, 10, 25, 50 26–44 40–58 20 

S1 4 24 30 83 5, 10, 25, 30, 50 5, 10, 25, 50 34–71 87–124 20 

S1 5 24 30 89 5, 10, 25, 30, 50 5, 10, 25, 50 34–74 93–133 20 

S1 6 24 30 84 5, 10, 25, 30, 50 5, 10, 25, 50 34–72 88–126 20 

S1 7 28 35 118 5, 10, 25, 30, 50 5, 10, 25, 50 40–94 123–177 20 

S1 8 28 35 115 5, 10, 25, 30, 50 5, 10, 25, 50 40–92 120–172 20 

S1 9 28 35 113 5, 10, 25, 30, 50 5, 10, 25, 50 40–91 118–169 20 

S1 10 15 20 39 5, 10, 25, 30, 50 5, 10, 25, 50 21–39 40–58 20 

S1 11 15 20 37 5, 10, 25, 30, 50 5, 10, 25, 50 21–38 38–55 20 

S1 12 15 20 37 5, 10, 25, 30, 50 5, 10, 25, 50 21–38 38–55 20 

S1 13 35 40 146 5, 10, 25, 30, 50 5, 10, 25, 50 47–113 153–219 20 

S1 14 35 40 143 5, 10, 25, 30, 50 5, 10, 25, 50 47–111 150–214 20 

S1 15 35 40 143 5, 10, 25, 30, 50 5, 10, 25, 50 47–111 150–214 20 

S2 16 50 60 191 5, 25, 50 | 10, 30 05, 10 | 25, 50 69–155 200–286 6 | 4 

S2 17 50 60 197 5, 25, 50 | 10, 30 25, 50 | 05, 10 69–158 206–295 6 | 4 

S2 18 50 60 196 5, 25, 50 | 10, 30 05, 10 | 25, 50 69–158 205–294 6 | 4 

S2 19 70 80 247 5, 25, 50 | 10, 30 25, 50 | 05, 10 92–203 259–370 6 | 4 

S2 20 70 80 245 5, 25, 50 | 10, 30 05, 10 | 25, 50 92–202 257–367 6 | 4 

S2 21 70 80 248 5, 25, 50 | 10, 30 25, 50 | 05, 10 92–204 260–372 6 | 4 

S2 22 90 100 274 5, 25, 50 | 10, 30 05, 10 | 25, 50 113–237 287–411 6 | 4 

S2 23 90 100 271 5, 25, 50 | 10, 30 25, 50 | 05, 10 113–235 284–406 6 | 4 

S2 24 90 100 273 5, 25, 50 | 10, 30 05, 10 | 25, 50 113–236 286–409 6 | 4 

S2 25 125 140 324 5, 25, 50 | 10, 30 25, 50 | 05, 10 156–302 340–486 6 | 4 

S2 26 125 140 323 5, 25, 50 | 10, 30 05, 10 | 25, 50 156–301 339–484 6 | 4 

S2 27 125 140 322 5, 25, 50 | 10, 30 25, 50 | 05, 10 156–301 338–483 6 | 4 

S2 28 140 170 398 5, 25, 50 | 10, 30 05, 10 | 25, 50 189–369 417–597 6 | 4 

S2 29 140 170 399 5, 25, 50 | 10, 30 25, 50 | 05, 10 189–369 418–598 6 | 4 

S2 30 140 170 396 5, 25, 50 | 10, 30 05, 10 | 25, 50 189–368 415–594 6 | 4 

S2 31 200 200 447 5, 25, 50 | 10, 30 25, 50 | 05, 10 222–423 469–670 6 | 4 

S2 32 200 200 449 5, 25, 50 | 10, 30 05, 10 | 25, 50 222–424 471–673 6 | 4 

S2 33 200 200 449 5, 25, 50 | 10, 30 25, 50 | 05, 10 222–424 471–673 6 | 4 

S2 34 300 300 524 5, 25, 50 | 10, 30 05, 10 | 25, 50 326–562 550–786 6 | 4 

S2 35 300 300 525 5, 25, 50 | 10, 30 25, 50 | 05, 10 326–562 551–787 6 | 4 

S2 36 300 300 525 5, 25, 50 | 10, 30 05, 10 | 25, 50 326–562 551–787 6 | 4 

S2 37 400 400 625 5, 25, 50 | 10, 30 25, 50 | 05, 10 431–712 656–937 6 | 4 

S2 38 400 400 625 5, 25, 50 | 10, 30 05, 10 | 25, 50 431–712 656–937 6 | 4 

S2 39 400 400 625 5, 25, 50 | 10, 30 25, 50 | 05, 10 431–712 656–937 6 | 4 

Total 540 

Table 2 

Characteristic of the solution methods. 

Solution strategy Combination (stopping criteria) a 

H1 Construction heuristic + 2 opt ( ET > TL or locally optimal). 

H2 Construction heuristic + swap ( ET > TL or locally optimal). 

H3 Construction heuristic + 2 opt ( ET > 

1 
2 

T L or locally optimal) + swap ( ET > TL or locally optimal). 

H4 Construction heuristic + swap ( ET > 

1 
2 

T L or locally optimal) + 2 opt ( ET > TL or locally optimal). 

BBC1 BBC algorithm with valid inequalities (39) –(42) , feasibility cut (33) and optimality multi-cuts (35) and (36) ( ET > TL or gap = 0 ). 

BBC2 BBC algorithm with valid inequalities (39) –(42) , feasibility cut (32) and optimality cut (34) ( ET > TL or gap = 0 ). 

BBC3 BBC algorithm with valid inequalities (39) –(42) , feasibility cut (32) and optimality multi-cuts (36) ( ET > TL or gap = 0 ). 

BBC4 BBC algorithm with valid inequalities (39) –(42) , feasibility cut (32) and optimality multi-cuts (35) and (36) ( ET > TL or gap = 0 ). 

BBC5 BBC algorithm without valid inequalities (39) –(42) , feasibility cut (32) and optimality multi-cuts (35) and (36) ( ET > TL or gap = 0 ). 

BBC6 H3 ( ET > 

1 
6 

T L or locally optimal) + BBC4 ( ET > TL or gap = 0 ). 

GR-BBC6 H3 ( ET > 

1 
6 

T L or locally optimal) + GR ( ET > 

1 
60 

T L each subproblem or optimality of the subproblems) + BBC4 with additional valid 

inequalities (43) –(44) ( ET > TL or gap = 0 ). 

MIP model Model (1) –(18) ( ET > TL or gap = 0 ) 

a Let TL be the total time limit and ET be the elapsed time. 
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strategy. The algorithm BBC6 relies on the best heuristic method

to provide a good feasible initial solution to the best BBC method.

The best solution found with the heuristic is set as the incum-

bent solution of the MP. In the GR-BBC6 method, the algorithm

BBC6 is combined with the Graph Reduction (GR) strategy pre-

sented in Section 4.7 to derive valid inequalities (39) –(44) . BBC6

is used to solve the reduced CSRP defined using the subgraphs

Ḡ 

L p F f , which are generated using solutions provided by the heuris-

tic H3, considering sets of n = 20 damaged nodes and n = |V d |
1 2 
emand nodes (see Algorithm 4 ). The time limit to solve the re-

uced CSRP is 60 seconds. If the reduced CSRP for a given sub-

raph Ḡ 

L p F f is not solved to optimality within this time limit, we

educe this subgraph by removing only the first five nodes of sets

 p and F f and then we solve the corresponding reduced CSRP again.

inally, the MIP model presented in Section 4.1 is used to solve the

roblem. 

The solution methods were evaluated using performance pro-

les as proposed by Dolan and Moré (2002) . Given a set P of
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Fig. 6. Performance profiles of the heuristic methods based on the objective value. 
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Table 3 

Extreme values of the performance profiles for 

the BBC strategies. 

BBC strategy P ( f , q ) a q b 

BBC1 0.5842 7.6582 

BBC2 0.6237 5.7664 

BBC3 0.6411 4.0752 

BBC4 0.6474 3.4558 

BBC5 0.3553 7.6582 

a Values of P ( f , q ) when q = 0 . 
b Values of q when P( f, q ) = 1 . 
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nstances and a set F of solution methods, performance profiles

re based on the cumulative distribution function P ( f , q ), which in-

icates the probability of a strategy f with a log 2 performance ratio

eing within a factor q ∈ R of the best possible ratio. The function

 ( f , q ) is defined as: 

 ( f, q ) = 

|{ p ∈ P : log 2 (v (p, f )) ≤ q }| 
|P| , q ≥ 0 , (45) 

ith v (p, f ) = 

T C p f 

min { T C p f : f ∈ F } , (46) 

here |P| is the total number of instances and TC pf is the perfor-

ance measure (objective function cost, gap or elapsed time) of

roblem p when solved by method f . Values of P ( f , q ) when q = 0

ndicate the fraction of instances for which the strategy reached

he best solution. For q > 0, P ( f , q ) is the fraction of instances for

hich strategy f obtained solutions with a quality within a factor

f 2 q of the best solutions. Values of q when P ( f, q ) = 1 indicate

hat quality of the solutions obtained by strategy f for all instances

re within a factor of 2 q of the best solutions. 

.3. Computational performance of the proposed approaches 

To evaluate the performance of the heuristic approaches, we

se the objective value of the solutions found within a time limit

f 3600 seconds. The heuristic algorithms do not provide a lower

ound for the objective value, so we cannot calculate the optimal-

ty gap. On the other hand, the BBC approaches provide upper- and

ower-bound values, so we use the optimality gap provided by the

lgorithms within a time limit of 3600 seconds as well to compare

he BBC approaches. The optimality gap is computed as: 

ap = 

Z U − Z L 

Z U 
, (47) 

n which Z U is the upper bound or best integer solution and Z L 

s the lower bound. The optimality gap is a good indicator of the

uality of the methods because it considers simultaneously the up-

er and lower bound of the solutions. However, we also compared
he upper bounds of the BBC strategies, and the overall results

ere similar to those obtained with the optimality gaps. 

Fig. 6 shows the performance profiles for the heuristic strate-

ies (H1–H4) using the objective value. The results indicate that

he two strategies that combine the local search heuristics swap

nd 2 opt , H3 and H4, yield a more stable performance than the

thers. Strategy H3 (H4) found the smallest objective function cost

or 80.18% (74.44%) of the instances, and in the remaining in-

tances, H3 (H4) provides a solution with cost within a factor of

 

0.61 ≈ 1.53 (2 0.78 ≈ 1.72) of the lowest cost found. Due to this be-

avior, H3 was selected as the best heuristic strategy. 

Fig. 7 presents the performance profiles for the BBC algorithms

BBC1–BBC5) based on the optimality gap. Table 3 shows the ex-

reme values of the performance profiles for the BBC strategies.

he performance profiles reveal that the majority of the strategies

ave similar results in 90% ( P ( f, q ) = 0 . 9 ) of the instances. As ex-

ected, strategy BBC5, which does not use any valid inequalities,

resents the worst performance. In most instances, the valid in-

qualities improved the lower bound, thus accelerating the con-

ergence of the algorithms. In fact, while BBC5 found the best

ap only for 35.5% of the instances, BBC4 found the best gap for

4.8% of the instances, which represents a substantial improve-

ent of 82%. Furthermore, for instances in which the best gap is

ot achieved, BBC4 provides solutions with a gap within a factor of
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Fig. 7. Performance profiles of the BBC algorithms based on the optimality gap. 

Fig. 8. Performance profiles of the best BBC strategies and the MIP model based on the optimality gap. 
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2 3.45 ≈ 11 of the best gap, while for the BBC5 algorithm, the factor

is 2 7.66 ≈ 202. 

By comparing the performance profiles of algorithms BBC1 and

BBC4, it is possible to see that using feasibility cut (32) is better

than using feasibility cut (33) . This result was also expected be-

cause Eq. (32) cuts off a larger number of infeasible solutions when
t is used. Using multiple lower bound functions as optimality cuts

ppears to be more efficient than using single cuts, which can be

educed from the comparison among algorithms BBC2, BBC3 and

BC4. Notice that the optimality multi-cut approaches (BBC3 and

BC4) are faster and more stable than the optimality single-cut

pproach (BBC2). Finally, from the comparison of algorithms BBC3
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Table 4 

Average results of the GR-BBC6 strategy. 

Network Avg. upper Avg. gap Avg. elapsed Avg. best a 

Type (class) bound (%) time (seconds) time (seconds) 

S1 1 9744.98 2.36 720.02 0.06 

S1 2 34088.95 5.04 1039.29 0.05 

S1 3 49862.45 2.47 844.10 427.62 

S1 4 18037.43 8.24 1440.08 2.51 

S1 5 18484.94 8.76 1440.36 518.32 

S1 6 20917.01 12.51 1618.59 260.78 

S1 7 36511.03 6.71 2177.40 14.25 

S1 8 26048.79 13.94 1956.36 66.38 

S1 9 33953.25 21.84 1580.71 21.32 

S1 10 48459.97 2.42 725.84 487.55 

S1 11 38538.07 3.61 798.72 0.09 

S1 12 28036.81 1.76 723.84 6.21 

S1 13 23566.08 9.64 2139.00 19.63 

S1 14 81031.99 20.28 2119.10 351.12 

S1 15 52200.77 20.21 2138.85 8.85 

S2 16 38737.05 18.09 2074.49 628.29 

S2 17 30448.01 16.56 2259.61 391.54 

S2 18 97476.41 21.39 2092.61 569.09 

S2 19 65092.84 33.02 2160.52 1186.22 

S2 20 71172.82 38.95 2550.34 697.30 

S2 21 75602.30 40.20 2520.80 1190.12 

S2 22 211486.51 41.05 2883.30 1522.30 

S2 23 98827.21 41.49 2880.07 1129.43 

S2 24 209434.98 45.56 2880.88 1975.86 

S2 25 155240.79 49.76 2880.24 1127.12 

S2 26 274847.22 62.94 2961.89 1756.10 

S2 27 163429.50 53.77 2880.10 1267.61 

S2 28 435199.83 58.23 2881.21 1495.73 

S2 29 247954.95 65.94 2880.62 1311.75 

S2 30 46 84 94.13 57.76 3252.19 1643.45 

S2 31 314909.80 70.55 2880.80 1232.92 

S2 32 337827.97 61.12 2881.92 1224.98 

S2 33 275998.35 65.94 3240.33 912.47 

S2 34 481122.55 88.49 3600.03 1097.02 

S2 35 472126.95 84.17 3600.05 1704.58 

S2 36 497125.76 86.16 3600.03 1311.96 

S2 37 532181.82 91.50 3600.16 988.37 

S2 38 697781.81 91.87 3600.05 1433.22 

S2 39 553372.93 89.66 3600.05 1112.55 

Avg. all 187830.13 38.82 2361.66 797.30 

Avg. S1 34632.17 9.32 1430.82 145.65 

Avg. S2 283578.85 57.26 2943.43 1204.58 

a Time that GR-BBC6 spent to find the best upper bound. 
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l  
nd BBC4, we can conclude that the use of cut (35) improves the

onvergence of the method. Optimality multi-cut (35) helps set

 lower bound for a greater number of solutions than multi-cut

36) individually. Therefore, the algorithm BBC4 is selected as the

est strategy, which provides the smallest gap for 64.73% of the in-

tances and, in the remaining instances, provides solutions with a

ap within a factor of 2 3.45 ≈ 11 of the best gap obtained. 

Approach BBC6 combines the best heuristic and BBC strategies,

3 and BBC4, respectively. GR-BBC6 combines BBC6 with the GR

trategy. We build performance profiles based on the gap provided

y the algorithms within the time limit of 3,600 seconds to com-

are BBC4, BBC6, GR-BBC6, and the MIP model. As we can see in

ig. 8 , not surprisingly, the BBC algorithms outperform the MIP

odel. In fact, the mathematical model found feasible solutions

or only 45.8% of the instances. BBC6 shows a more stable perfor-

ance than the BBC4 algorithm. Thus, starting the BBC with an

nitial solution provided by heuristic H3 improves the performance

f the BBC algorithm. By comparing GR-BBC6 and BBC6, we can

nfer that the valid inequalities (43) and (44) derived by the GR

trategy are effective to improve the convergence of the method.

R-BBC6 (BBC6) achieved the best gap in 96.1% (50.78%) of the in-

tances and, for the instances it was not achieved, the solution gap

as within a factor of 2 4.68 ≈ 25.63(2 6.12 ≈ 69.55) of the best gap

btained. 
.4. Performance of the best strategy 

Table 4 shows the average upper bound, gap and elapsed time

f the best strategy proposed in this paper for solving the in-

tances of group S1 and S2. For all instances, the GR-BBC6 method

rovided feasible solutions within 3600 seconds. The average to-

al elapsed time was 2361 seconds, and the average time that

R-BBC6 spent to find the best upper bound was 797.3 seconds,

6.24% smaller than the elapsed time. Thus, GR-BBC6 finds feasible

olutions relatively quickly, and most of the elapsed time is con-

umed to improve the lower-bound values. The average gap con-

idering all instances was 38.82%. For instances S1, the average gap

as 9.32%, while for instances S2, the average gap was 57.26%. As

xpected, worse gaps are obtained for instances with a large num-

er of nodes and arcs. If we consider only practical size instances

according to most of the real-world cases presented in the liter-

ture) we could limit our experiments to the first 24 class of in-

tances, obtaining an average gap of 18.17%. Therefore, the GR-BBC6

lgorithm is effective to solve practical size instances with good

uality solutions. 

We also performed additional experiments increasing the time

imit of the GR-BBC6 algorithm to 24 hours. We considered the

lasses of instances 12 and 38, which present the smallest and the

argest optimality gaps according to Table 4 . The results reveal that
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Table 5 

Average gap for each value of α and β . 

α (%) 

5 10 25 30 50 Avg. 

β (%) 5 8.51 16.65 38.10 39.72 56.64 31.92 

10 7.59 16.33 34.11 40.85 53.85 30.55 

25 7.58 15.63 35.92 39.44 55.84 30.88 

50 7.34 12.32 32.64 37.36 55.83 29.10 

Avg. 7.76 15.23 35.19 39.34 55.55 30.61 
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the gap is reduced from 1.76% to 1.21% (31.25%) in class 12, and

from 91.87% to 86.89% (5.42%) in class 38. Thus, our approach can

be more effective for longer computational times, although the gap

improvement can be rather negligible from the practical point of

view. 

Table 5 shows the average gap of the GR-BBC6 method accord-

ing to different values of α and β . For example, the value 16.65 in

bold in the table indicates the average gap for all instances with

α = 10% and β = 5% . Note that the instances become more chal-

lenging when the percentage of damage ( α) increases, as expected.

In fact, more damaged nodes lead to (possibly) more crew sched-

ules to be evaluated in the MP, slowing down the convergence of

the method. More nodes in the network also makes the resolution

of the subproblems even harder. The GR-BBC6 strategy found solu-

tions with an average gap of 7.76% for the instances with α = 5% ,

and an average gap of 55.55% for instances with α = 50% . Simi-

larly, the difficulty of the instances decreases (on average) when

the maximum tolerable percentage ( β) increases. Higher values of

β make it easier for subproblem SP2 to find a feasible path be-

tween the depot and the demand nodes. The average gap for in-

stances with β = 5% is 31.92%, while the average gap for instances

with β = 50% is 29.10%. It is worth mentioning that, in most of the

practical situations, no more than α = 30% of the roads are consid-

ered as damaged roads. For instance, Akbari and Salman (2017a) ,

which addressed one of the largest practical cases in the literature,

considered 33% of the roads as damaged. 

5.5. Comparison with other results from the literature 

This section compares the results obtained by the GR-BBC6

strategy with the results of other approaches available in the

i  

Table 6 

Average result of the solution methods for small instances. 

Avg. upper bound # optimal 

Class IGRCP a DP b GR-BBC6 c DP GR-BBC

1 9744.98 9744.98 9744.98 20 1

2 34088.95 34092.54 34088.95 20 1

3 49987.07 – 49862.45 17 1

4 18246.59 – 18037.43 16 1

5 18151.81 – 18484.94 12 1

6 21253.39 – 20917.01 1 1

7 36873.30 – 36511.03 0 

8 26382.27 – 26048.79 0 

9 35223.52 – 33953.25 0 1

10 48545.84 48460.28 48459.97 20 1

11 39212.63 – 38538.07 17 1

12 28876.04 – 28036.81 16 1

13 23535.63 – 23566.08 8 

14 87163.33 – 81031.99 8 

15 52085.29 – 52200.77 5 

Average 35291.38 – 34632.17 10.67 12.0

a Metaheuristic based on GRASP proposed in Maya-Duque et al. (2016) . 
b Exact dynamic programming algorithm proposed in Maya-Duque et al. (2
c Best BBC strategy (1 hour time limit). 
d Time that GR-BBC6 spent to find the best upper bound. 
iterature, namely, the dynamic programming (DP) algorithm and

he iterated greedy-randomized constructive procedure (IGRCP)

etaheuristic, both of which were proposed by Maya-Duque et al.

2016) . While the DP approach is also an exact method analogous

o our GR-BBC6 method, the IGCRP is a metaheuristic and hence

as no guarantee of optimality. This metaheuristic is based on the

reedy randomized adaptive search procedure (GRASP) and con-

ists of two phases: the construction of a feasible solution and an

mprovement in the constructed solution, including multiple runs

f the construction phase after the improvement routine. Our BBC

lgorithm is the first exact method proposed in literature able to

nd a lower bound for all the considered instances. Thus, it is not

ossible to perform any comparison of lower bounds using other

pproaches from the literature. This way, we only compare the so-

ution costs (upper bounds) provided by the BBC with the costs de-

ivered by the other approaches. We emphasize that the purpose is

ot to compare the methods, but to verify the quality of the solu-

ions provided by the GR-BBC6 method. We show the results only

or instances in group S1 (small instances) because the DP strategy

roposed in Maya-Duque et al. (2016) is not able to solve medium

nd large instances. The IGRCP metaheuristic, on the other hand,

as used to solve S2 instances in Maya-Duque et al. (2016) , but

e did not have access to those solutions until the submission of

he paper. 

Table 6 shows the average upper bound and elapsed time of

he three approaches for instances in group S1. The character “–”

ndicates that no solution was obtained for one or more instances

f the class. The last column “ratio” shows the ratio of the upper

ound of IGRCP in relation to the upper bound of GR-BBC6. Ratios

maller than 1 indicate that the GR-BBC6 strategy improves the up-

er bound found by the IGRCP metaheuristic. The columns “# op-

imal” show the number of optimal solutions found by each exact

ethod. The DP algorithm solved all the instances to optimality for

lasses of instances corresponding to networks 1, 2 and 10. For the

ther classes, the DP algorithm did not solve some of the instances

ithin a time limit of 24 hours, especially those with α = 50 . For

nstances of classes corresponding to networks 1, 2 and 10, the so-

utions of the GR-BBC6 method were equal to the solutions of the

P strategy, indicating that these solutions are optimal, although

here is a nonzero gap related to the lower bound computed with

he GR-BBC6 method. 

The BBC is able to prove optimality in (181) 60.33% of the small

nstances, while the best exact approach available so far in the lit-
Avg. elapsed time (seconds) Avg. best d 

6 IGRCP DP GR-BBC6 time (seconds) Ratio 

6 1.09 2945.31 720.02 0.06 1.0 0 0 

6 1.43 8733.50 1039.29 0.05 1.0 0 0 

6 1.60 – 844.10 427.62 0.998 

1 7.04 – 1440.08 2.51 0.989 

1 14.10 – 1440.36 518.32 1.018 

1 17.98 – 1618.59 260.78 0.984 

8 11.77 – 2177.40 14.25 0.990 

9 38.37 – 1956.36 66.38 0.987 

1 20.26 – 1580.71 21.32 0.964 

6 0.91 16663.44 725.84 487.55 0.998 

6 1.59 – 798.72 0.09 0.983 

6 0.87 – 723.84 6.21 0.971 

8 7.83 – 2139.00 19.63 1.001 

8 91.47 – 2119.10 351.12 0.930 

8 53.51 – 2138.85 8.85 1.002 

7 17.99 – 1430.82 145.65 0.988 

016) . 
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rature proved optimality for (160) 53.33% of the small instances.

urthermore, our BBC algorithm solves to optimality 18.33% of the

edium and large instances, while medium and large instances

ere not solved with the DP. In terms of computational times, the

P strategy was slower than the GR-BBC6 strategy for instances in

lasses 1, 2 and 10. 

On average, the solutions provided by the BBC approach GR-

BC6 are better than the solutions provided by the IGRCP heuris-

ic. Additionally, the BBC6 method provided a lower bound and an

ptimality gap for all the solutions within a time limit of 3600

econds. Thus, the BBC can obtain a valid lower bound for all the

nstances without deteriorate the cost (upper bound) of the solu-

ions or even at improving the upper bound of the solutions. As

xpected, the IGRCP metaheuristic was the fastest method but gave

o guarantee of optimality, as it corresponds to a heuristic method.

ote that most of the time spent by the BBC strategy is to improve

he lower bound. In fact, the average time spent by GGR-BBC6 to

nd the best upper bound is 145.65 seconds, 10 times smaller than

he average elapsed time. 

. Conclusions and future research 

This paper explored branch-and-Benders-cut (BBC) approaches

o solve the Crew Scheduling and Routing Problem (CSRP), in the

ontext of road restoration. As a key contribution, it developed the

rst exact solution approach that is able to obtain feasible solu-

ions and lower bounds for all instances from the literature, in-

luding very large-scale instances. The addressed problem is typ-

cally found in post-disaster situations where the damaged net-

ork must be repaired as quickly as possible to promote an effec-

ive response. The joint presence of scheduling and routing deci-

ions explains the complexity of solving such problems, for which

ommercial solvers cannot be efficiently used. Thus, we have de-

ised approaches based on the Benders decomposition, applied to

 MIP formulation that determines a fair and efficient road restora-

ion plan. We employed feasibility cuts, multiple optimality cuts,

nd specialized valid inequalities, which have enhanced the per-

ormance of the BBC approaches. The use of simple heuristics to

rovide initial incumbent solutions for the master problem was

lso an important strategy to accelerate the convergence of the

ethods. The proposed BBC strategies have improved the results

f exact and heuristic methods proposed so far in the literature.

n fact, our best approach has proven the optimality of 41.67% of

he instances, and for 100% of the instances, it obtained valid lower

ounds for the first time. It is worth noting that we have not found

ny other computational study that considers so many nodes and

rcs for any variant of the CSRP in road restoration. The major re-

aining obstacle, though, is to provide the optimality certificate

or some large-scale instances. In this sense, we would like to in-

estigate particular properties and characteristics of the problem to

erive new valid inequalities and different ways for decomposing

he MIP formulation. Finally, it would be of interest to improve the

ower bounds of the current solutions and to develop hybrid meth-

ds combining exact and metaheuristic strategies to obtain tighter

olutions. 
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