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a b s t r a c t 

The Benders decomposition algorithm has been successfully applied to a wide range of difficult opti- 

mization problems. This paper presents a state-of-the-art survey of this algorithm, emphasizing its use in 

combinatorial optimization. We discuss the classical algorithm, the impact of the problem formulation on 

its convergence, and the relationship to other decomposition methods. We introduce a taxonomy of algo- 

rithmic enhancements and acceleration strategies based on the main components of the algorithm. The 

taxonomy provides the framework to synthesize the literature, and to identify shortcomings, trends and 

potential research directions. We also discuss the use of the Benders Decomposition to develop efficient 

(meta-)heuristics, describe the limitations of the classical algorithm, and present extensions enabling its 

application to a broader range of problems. 
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. Introduction 

It has been more than five decades since the Benders De-

omposition ( BD ) algorithm was proposed by Benders (1962) ,

ith the main objective of tackling problems with complicating

ariables, which, when temporarily fixed, yield a problem signifi-

antly easier to handle. The BD method (also referred to as vari-

ble partitioning , Zaourar and Malick (2014) , and outer lineariza-

ion , Trukhanov, Ntaimo, and Schaefer (2010) ) has become one of

he most widely used exact algorithms, because it exploits the

tructure of the problem and decentralizes the overall computa-

ional burden. Successful applications are found in many divers

elds, including planning and scheduling ( Canto, 2008; Hooker,

007 ), health care ( Luong, 2015 ), transportation and telecommuni-

ations ( Costa, 2005 ), energy and resource management ( Cai, McK-

nney, Lasdon, & Watkins, 2001; Zhang & Ponnambalam, 2006 ),

nd chemical process design ( Zhu & Kuno, 2003 ), as illustrated in

able 1 . 

The BD method is based on a sequence of projection, outer lin-

arization, and relaxation ( Geoffrion, 1970a, 1970b ). The model is

rst projected onto the subspace defined by the set of complicating

ariables. The resulting formulation is then dualized, and the asso-

iated extreme rays and points respectively define the feasibility
∗ Corresponding author at: CIRRELT - Interuniversity Research Centre on Enter- 
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equirements (feasibility cuts) and the projected costs (optimality

uts) of the complicating variables. Thus, an equivalent formula-

ion can be built by enumerating all the extreme points and rays.

owever, performing this enumeration and, then, solving the re-

ulting formulation is generally computationally exhausting, if not

mpossible. Hence, one solves the equivalent model by applying

 relaxation strategy to the feasibility and optimality cuts, yield-

ng a Master Problem ( MP ) and a subproblem, which are iteratively

olved to respectively guide the search process and generate the

iolated cuts. 

The BD algorithm was initially proposed for a class of mixed-

nteger linear programming ( MILP ) problems. When the integer

ariables are fixed, the resulting problem is a continuous linear

rogram ( LP ) for which we can use standard duality theory to de-

elop cuts. Many extensions have since been developed to apply

he algorithm to a broader range of problems (e.g., Geoffrion, 1972;

ooker & Ottosson, 2003 ). Other developments were proposed to

ncrease the algorithm’s efficiency on certain optimization classes

e.g., Costa, Cordeau, Gendron, & Laporte, 2012; Crainic, Hewitt, &

ei, 2014 ). In addition, BD often provides a basis for the design

f effective heuristics for problems that would otherwise be in-

ractable ( Côté & Laughton, 1984; Raidl, 2015 ). The BD approach

as thus become widely used for linear, nonlinear, integer, stochas-

ic, multi-stage, bilevel, and other optimization problems, as illus-

rated in Table 2 . 

Fig. 1 depicts the increasing interest in the BD algorithm over

he years. Despite this level of interest, there has been no compre-

ensive survey of the method in terms of its numerical and the-

http://dx.doi.org/10.1016/j.ejor.2016.12.005
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Table 1 

Some applications of the Benders decomposition method. 

Reference Application Reference Application 

1 Behnamian (2014) Production planning 17 Jiang et al. (2009) Distribution planning 

2 Adulyasak et al. (2015) Production routing 18 Wheatley et al. (2015) Inventory control 

3 Boland et al. (2016) Facility location 19 Laporte, Louveaux, and Mercure (1994) Traveling salesman 

4 Boschetti and Maniezzo (2009) Project scheduling 20 Luong (2015) Healthcare planning 

5 Botton et al. (2013) Survivable network design 21 Maravelias and Grossmann (2004) Chemical process design 

6 Cai et al. (2001) Water resource management 22 Moreno-Centeno and Karp (2013) Implicit hitting sets 

7 Canto (2008) Maintenance scheduling 23 Oliveira et al. (2014) Investment planning 

8 Codato and Fischetti (2006) Map labeling 24 Osman and Baki (2014) Transfer line balancing 

9 Cordeau et al. (2006) Logistics network design 25 Pérez-Galarce et al. (2014) Spanning tree 

10 Cordeau et al. (2001a) Locomotive assignment 26 Pishvaee et al. (2014) Supply chain network design 

11 Cordeau et al. (2001b) Airline scheduling 27 Rubiales et al. (2013) Hydrothermal coordination 

12 Corréa et al. (2007) Vehicle routing 28 Saharidis et al. (2011) Refinery system network planning 

13 Côté et al. (2014) Strip packing 29 Sen et al. (2015) Segment allocation 

14 Fortz and Poss (2009) Network design 30 Bloom (1983) Capacity expansion 

15 Gelareh et al. (2015) Transportation 31 Wang et al. (2016) Optimal power flow 

16 Jenabi et al. (2015) Power management 32 Errico, Crainic, Malucelli, and Nonato (2016) Public transit 

Table 2 

Examples of optimization problems handled via Benders method. 

Reference Model Reference Model 

1 Adulyasak et al. (2015) Multi-period stochastic problem 16 Jenabi et al. (2015) Piecewise linear mixed-integer problem 

2 Behnamian (2014) Multi-objective MILP 17 Wolf (2014) Multi-stage stochastic program 

3 Cai et al. (2001) Multi-objective nonconvex nonlinear 

problem 

18 Laporte et al. (1994) Probabilistic integer formulation 

5 Cordeau et al. (2001b) Pure 0–1 formulation 19 Li (2013) Large-scale nonconvex MINLP 

6 Corréa et al. (2007) Binary problem with logical 

expressions 

20 Moreno-Centeno and Karp (2013) Problem with constraints unknown in 

advance 

7 Gabrel, Knippel, and Minoux (1999) Step increasing cost 21 Bloom (1983) Nonlinear multi-period problem with 

reliability constraint 

8 Côté et al. (2014) MILP with logical constraints 22 Osman and Baki (2014) Nonlinear integer formulation 

9 de Camargo et al. (2011) Mixed-integer nonlinear program 

(MINLP) 

23 Pérez-Galarce et al. (2014) Minmax regret problem 

10 Emami et al. (2016) Robust optimization problem 24 Pishvaee et al. (2014) Multi-objective possibilistic 

programming model 

11 Fontaine and Minner (2014) Bi-level problem with bilinear 

constraints 

25 Raidl et al. (2014) Integer, bilevel, capacitated problem 

12 Fortz and Poss (2009) Multi-layer capacitated network 

problem 

27 Rubiales et al. (2013) Quadratic MILP master problem and 

nonlinear subproblem 

13 Gendron et al. (2014) Binary problem with nonlinear 

constraints 

28 Sahinidis and Grossmann (1991) MINLP and nonconvex problems 

14 Grothey et al. (1999) Convex nonlinear problem 29 Harjunkoski and Grossmann (2001) Multi-stage problem with logical and 

big-M constraints 

15 O’Kelly et al. (2014) MINLP with concave objective function and staircase constraint matrix structure 

Fig. 1. Annual number of mentions of the Benders decomposition according to https://scholar.google.com/ . 

https://scholar.google.com/
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retical challenges and opportunities. The now out-of-date survey

y Costa (2005) reviews only applications to fixed-charge network

esign problems. The main goal of this paper therefore is to con-

ribute to filling this gap by reviewing the current state-of-the-art,

ocusing on the main ideas for accelerating the method, discussing

he main variants and extensions aimed to handle more general

roblems involving, e.g., nonlinear/integer/constraint programming 

ubproblems, and identifying trends and promising research di-

ections. Many different enhancement strategies were proposed to

ddress the shortcomings of the BD method and accelerate it. This

ffort contributed significantly to the success of the method. We

ropose a taxonomy of the enhancement and acceleration strate-

ies based on the main components of the algorithm: the decom-

osition strategy, the strategies to handle the MP and subproblem,

nd the strategies to generate solutions and cuts. The taxonomy

rovides the framework to classify and synthesize the literature

nd to identify relations among strategies and between these and

he BD method. 

The remainder of this paper is organized as follows.

ection 2 presents the classical BD algorithm, the associated model

election criteria, and its relationship to other decomposition

ethods. Section 3 presents the proposed taxonomy, used to sur-

ey the acceleration strategies in Sections 4 –7 . Section 8 presents

enders-type heuristics, and Section 9 describes extensions of the

lassical algorithm. Finally, Section 10 provides concluding remarks

nd describes promising research directions. 

. The Benders decomposition method 

We present in this section the classical version of the Benders

lgorithm ( Benders, 1962 ). We review its extensions to a broader

ange of optimization problems in Section 9 . 

.1. The classical version 

We consider an MILP of the form 

Minimize f T y + c T x (1) 

ubject to Ay = b (2) 

y + Dx = d (3) 

 ≥ 0 (4) 

 ≥ 0 and integer , (5) 

ith complicating variables y ∈ R 

n 1 , which must take positive inte-

er values and satisfy the constraint set Ay = b, where A ∈ R 

m 1 ×n 1 

s a known matrix and b ∈ R 

m 1 is a given vector. The continuous

ariables x ∈ R 

n 2 , together with the y variables, must satisfy the

inking constraint set By + Dx = d, with B ∈ R 

m 2 ×n 1 , D ∈ R 

m 2 ×n 2 ,

nd d ∈ R 

m 2 . The objective function minimizes the total cost with

he cost vectors f ∈ R 

n 1 and c ∈ R 

n 2 . 

Model ( 1–5 ) can be re-expressed as 

in 

ȳ ∈ Y 

{ 

f T ȳ + min 

x ≥0 
{ c T x : Dx = d − B ̄y } , 

} 

(6) 

here ȳ is a given value for the complicating variables, which be-

ongs to the set Y = { y | Ay = b, y ≥ 0 and integer}. The inner min-

mization is a continuous linear problem that can be dualized

y means of dual variables π associated with the constraint set

x = d − B ̄y : 

max 
∈� m 2 

{ π T (d − B ̄y ) : π T D ≤ c} (7) 

a  
Based on duality theory, the primal and dual formulations can

e interchanged to extract the following equivalent formulation: 

in 

ȳ ∈ Y 

{ 

f T ȳ + max 
π∈� m 2 

{ π T (d − B ̄y ) : π T D ≤ c} 
} 

(8) 

The feasible space of the inner maximization, i.e., F = { π | π T D ≤
} , is independent of the choice of ȳ . Thus, if F is not empty, the

nner problem can be either unbounded or feasible for any arbi-

rary choice of ȳ . In the former case, given the set of extreme rays

 of F , there is a direction of unboundedness r q , q ∈ Q for which

 

T 
q (d − B ̄y ) > 0 ; this must be avoided because it indicates the in-

easibility of the ȳ solution. We add a cut 

 

T 
q (d − B ̄y ) ≤ 0 ∀ q ∈ Q (9) 

o the problem to restrict movement in this direction. In the latter

ase, the solution of the inner maximization is one of the extreme

oints π e , e ∈ E , where E is the set of extreme points of F . If we

dd all the cuts of the form (9) to the outer minimization problem,

he value of the inner problem will be one of its extreme points.

onsequently, problem (8) can be reformulated as: 

in 

ȳ ∈ Y 
f T ȳ + max 

e ∈ E 
{ π T 

e (d − B ̄y ) } (10) 

ubject to r T q (d − B ̄y ) ≤ 0 ∀ q ∈ Q (11) 

This problem can easily be linearized via a continuous variable

∈ � 

1 to give the following equivalent formulation to problem ( 1–

 ), which we refer to as the Benders Master Problem ( MP ): 

in 

y,η
f T y + η (12) 

ubject to Ay = b (13) 

≥ π T 
e (d − By ) ∀ e ∈ E (14) 

 ≥ r T q (d − By ) ∀ q ∈ Q (15) 

 ≥ 0 and integer (16) 

Constraints (14) and (15) are referred to as optimality and fea-

ibility cuts, respectively. The complete enumeration of these cuts

s generally not practical. Therefore, Benders (1962) proposed a re-

axation of the feasibility and optimality cuts and an iterative ap-

roach. Thus, the BD algorithm repeatedly solves the MP, which

ncludes only a subset of constraints (14) and (15) , to obtain a trial

alue for the y variables, i.e., ȳ . It then solves subproblem (7) with

¯ . If the subproblem is feasible and bounded, a cut of type (14) is

roduced. If the subproblem is unbounded, a cut of type (15) is

roduced. If the cuts are violated by the current solution, they are

nserted into the current MP and the process repeats. 

Fig. 2 illustrates the BD algorithm. After deriving the initial MP

nd subproblem, the algorithm alternates between them (starting

ith the MP) until an optimal solution is found. To confirm the

onvergence, the optimality gap can be calculated at each itera-

ion. The objective function of the MP gives a valid lower bound on

he optimal cost because it is a relaxation of the equivalent Ben-

ers reformulation. On the other hand, if solution ȳ yields a feasi-

le subproblem, then the sum of both f T ȳ and the objective value

ssociated to the subproblem provides a valid upper bound for the

riginal problem (1) –(5) . 

.2. Model selection for Benders decomposition 

A given problem can usually be modeled with different but

quivalent formulations. However, from a computational point of

iew, the various formulations may not be equivalent. Geoffrion

nd Graves (1974) observed that the formulation has a direct
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Fig. 2. Schematic representation of the Benders decomposition method. 
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impact on the performance of the BD. Magnanti and Wong

(1981) demonstrated that a formulation with a stronger LP relax-

ation will have, in general, a better performance. This is because

of the tighter root node and the smaller number of fractional vari-

ables and also because the generated cuts are provably stronger.

Sahinidis and Grossmann (1991) proved that the BD method ap-

plied to a mixed integer nonlinear programming (NLP) formulation

with a zero NLP relaxation gap requires only the cut corresponding

to the optimal solution to converge. Cordeau, Pasin, and Solomon

(2006) studied a stochastic logistic network design problem. They

found that when the original formulation was strengthened with a

set of valid inequalities (VIs), the performance of the BD method

was considerably improved. 

These observations confirm the importance of tight formula-

tions in the context of the BD method. However, tighter formula-

tions are often obtained by adding additional, problem-dependent,

constraints. This may result in a more time-consuming subprob-

lem, which may also exhibit a higher degree of degeneracy. There-

fore, there must be a trade-off between the reduction in the num-

ber of iterations and the additional difficulty of the subproblem. 

2.3. Relationship to other decomposition methods 

The BD method is closely related to other decomposition meth-

ods for LP, such as Dantzig–Wolfe and Lagrangian optimization (see

Lim (2010) for details). In particular, solving an LP by Dantzig–

Wolfe decomposition is equivalent to applying the BD approach to

its dual. The relationship is clear since Dantzig–Wolfe is particu-

larly suitable for problems with complicating constraints, and the

dual of these constraints will be the complicating variables in the

BD method. Note that the subproblems are also equivalent in the

two methods. The BD method is also equivalent to a cutting-plane

method applied to the Lagrangian dual. 

In integer programming, the situation is more complex, and

there is no simple relationship among the decomposition methods.

In contrast to Lagrangian relaxation and Dantzig–Wolfe decompo-

sition, the BD method directly converges to an optimal solution

to the MILP rather than to a relaxation of the problem; therefore,

there is no need to embed it in a branch-and-bound framework.

However, the classical BD approach cannot handle integrality

requirements in the subproblems; variants have been proposed

( Section 9 ). 

Finally, there are close relationships between Benders cuts

and various classical VIs ( Magnanti, Mireault, & Wong, 1986 ). For

instance, Costa, Cordeau, and Gendron (2009) demonstrated that

cutset inequalities are essentially Benders feasibility cuts, while

Benders feasibility cuts are not, in general, metric inequalities

and require additional lifting procedures for conversion into met-

ric inequalities. Therefore, the classical BD method has several
umerical and theoretical limitations, for which various enhance-

ent and acceleration strategies have been proposed. 

. Taxonomy of the enhancement strategies 

A straightforward application of the classical BD algorithm may

equire excessive computing time and memory ( Magnanti & Wong,

981; Naoum-Sawaya & Elhedhli, 2013 ). Its main drawbacks in-

lude: time-consuming iterations; poor feasibility and optimality

uts; ineffective initial iterations; zigzagging behavior of the pri-

al solutions and slow convergence at the end of the algorithm

i.e., a tailing-off effect); and upper bounds that remain unchanged

n successive iterations because equivalent solutions exist. 

Much research was dedicated to exploring ways to improve the

onvergence of the algorithm by reducing the number of iterations

nd the time required for each iteration. The former goal is aimed

or by improving the quality of both the generated solutions and

he cuts, and the latter by improving the solution procedure used

o optimize the MP and subproblem in each iteration. The decom-

osition strategy that defines the initial MP and subproblem is an-

ther fundamental building block of the algorithm with significant

onsequences for its efficiency, as it determines both the difficulty

f the problems and the quality of the solutions. We define there-

ore a four-dimension taxonomy, illustrated in Fig. 3 , that captures

ll these factors. 

The decomposition strategy specifies how the problem is parti-

ioned to obtain the initial MP and subproblem. In a classical de-

omposition all the linking constraints and noncomplicating vari-

bles are projected out. In a modified decomposition these con-

traints and variables are partially projected to maintain an ap-

roximation of the projected terms in the MP. 

The solution procedure concerns the algorithms used for the MP

nd subproblem. The standard techniques are the simplex method

nd branch-and-bound. They are treated as black-box solvers, and

o attempt is made to adapt them to the characteristics of the

roblem or the convergence requirements of the BD algorithm. Ad-

anced strategies exploit the structure of the MP and subproblem

r the search requirements of the BD algorithm. For example, these

trategies may aim to control the size of the problems or relax

he requirement that they are solved to optimality at every itera-

ion. We write “S/A” to indicate that standard techniques are used

or the MP and advanced techniques are used for the subproblem.

imilarly, we define A/A, A/S, and S/S. 

The solution generation concerns the method used to set trial

alues for the complicating variables. The classical strategy is to

olve the MP without modification (referred to as regular MP ).

euristics , an alternative MP , or an improved MP can be used to

enerate solutions more quickly or to find better solutions. Hybrid

trategies can also be defined, e.g., one can use the regular MP to

et an initial value for the master variables and then use heuristics

o improve it. 

The cut generation concerns the strategy used to generate op-

imality and feasibility cuts. Classically, this is done by solving

he regular subproblem obtained from the decomposition. Other

trategies reformulate the subproblem or solve auxiliary subprob-

ems. The “C” and “I” symbols represent the classical and the im-

roved strategies, respectively. For example, “C/I” indicates that the

lassical strategy is used to generate optimality cuts and the im-

roved strategies are used to generate feasibility cuts. Sections 4 –7

urvey the strategies of each component of the taxonomy. 

. Decomposition strategies 

Recent studies have presented various modified decomposi-

ion strategies. Crainic et al. (2014, 2016) emphasized that the BD

ethod causes the MP to lose all the information associated with
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Fig. 3. Components of taxonomy. 
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he noncomplicating variables. This results in instability, erratic

rogression of the bounds, and a large number of iterations. More-

ver, the problem structure associated with the linking constraints

3) is lost, and thus many classical VIs are not applicable. The au-

hors proposed Partial Benders Decomposition strategies that add to

he master explicit information from the scenario subproblems, by

etaining or creating scenarios, or both. They obtained significant

mprovements in terms of number of generated cuts and compu-

ational time. 

The nonstandard decomposition strategy of Gendron, Scutellà,

arroppo, Nencioni, and Tavanti (2014) is another interesting ex-

mple of a modified decomposition. After decomposing the prob-

em, the authors obtained a subproblem with integer variables and

onlinear constraints. To improve the convergence of the algo-

ithm, the authors retained the projected variables in the MP but

elaxed the integrality requirement. They also included in the MP

 linear approximation of the nonlinear constraints. They observed

 significant improvement in performance, although the difficulty

f the MP was noticeably increased. 

As indicated by the results mentioned above and the limited

tudies conducted in this dimension (4.17% of the cited articles in

his review paper), further research into decomposition strategies

s worthwhile, as modified decomposition strategies may signifi-

antly strengthen the relaxed MP. Such approaches are not only

omplementary to adding VIs, discussed in Section 6.2 , but may

lso provide the opportunity to derive a wider range of, possibly

tronger, VIs. 

. Solution procedure 

The iterative solution of the MP and subproblem is a major

omputational bottleneck. In particular, the MP, an MILP formu-

ation, is often lacking special structure, and is continually grow-

ng in size becoming more and more difficult to solve. Classically,

he MP is solved to optimality via branch-and-bound, while the

ubproblem is handled with the simplex method. In this section,

e survey the various alternatives that have been proposed. These

trategies exploit the structure of the MP and subproblem or are

esigned to improve the convergence speed. Fig. 4 lists the strate-

ies that we discuss. 

.1. MP level 

It has often been reported that more than 90% of the total

xecution BD time is spent on solving the MP ( Magnanti & Wong,

981; Zarandi, 2010 ). The strategies proposed to partially alleviate

his computational bottleneck, discussed in the next two subsec-
ions, either a) manage the size of the problem or b) solve it more

fficiently. 

.1.1. Size management 

In any optimal solution to the MP, the number of active con-

traints never exceeds the number of decision variables ( Minoux,

986 ). Thus, many of the generated cuts do not contribute to the

onvergence of the algorithm and merely slow it down (extra han-

ling effort and memory limitations). Therefore, cut deletion or

lean-up strategies are important, especially when multiple cuts are

nserted into the MP at each iteration. 

There is no reliable way to identify the useless cuts, so the

lean-up strategies are heuristic ( Ruszczy ́nski, 2003 ). They usually

nspect the slack values associated with each cut, a cut with a rel-

tively high slack value over some predetermined number of it-

rations being a good candidate for removal. One can avoid the

egeneration of eliminated cuts (and prevent the possible cycling

f the algorithm) by keeping them in a pool and reinserting them

nto the MP whenever they are violated by the current solution.

uts should be removed infrequently because constraint removal

as a disturbing impact on off-the-shelf optimization solvers, es-

ecially when re-optimization techniques are used for faster solu-

ion of the MP; see Geoffrion (1972) and Pacqueau, Francois, and

e Nguyen (2012) for implementation details. 

Sometimes, multiple cuts are available for insertion but not all

f them are worth adding. It is actually important to add cuts

autiously to avoid an explosion in the size of the MP. Holmberg

1990) defined cut improvement as follows: an optimality cut pro-

ides cut improvement if it is new and may be active in an opti-

al solution. Rei, Cordeau, Gendreau, and Soriano (2009) used this

efinition when selecting solutions in order to generate cuts. They

tated that a solution yields cut improvement if its value in the

urrent MP is strictly smaller than the best known upper bound.

ang and Lee (2012) selected tighter (feasibility) constraints from

 set of available cuts by measuring their distance from different

nterior points. After choosing a first cut from the pool, they added

ther cuts for which the “difference measure” from the first cut

as greater than a user-defined threshold. This yielded consider-

ble savings in computational time and number of iterations. 

In summary, one can control the size of the MP by remov-

ng unnecessary cuts or avoiding the insertion of an available cut.

owever, these strategies are not often used. Considering the ar-

icles cited in the present paper, only 3.13% of them used these

trategies. One reason is that simultaneously inserting many cuts

nto the MP reduces the number of iterations, and this often com-

ensates for the increase in the difficulty of addressing the prob-

em. Another reason is that these techniques are heuristic, so they
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Fig. 4. Advanced solution procedures. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(  

R  

m  

e  

n  

a  

d  

c  

B

 

a  

a  

t  

s  

s  

s  

(  

c  

r  

2  

Á  

n  

w  

t  

s  

a  

n  

a  

s  

g  

e  

a  

B  

a  

B

 

M  

n  

e  

l  

a  

i  

e  

t  

h  

a  

p  

a  

r  
may remove necessary cuts or add cuts that prove unhelpful. There

is a need for further research in this area. 

5.1.2. Algorithm 

It is not necessary to solve the MP to optimality at every itera-

tion in order to achieve global convergence. Some researchers have

focused on quickly finding suboptimal solutions. Others have taken

advantage of the structure of the MP to solve it more efficiently. 

Geoffrion and Graves (1974) were the first to address the MP’s

computational difficulties. They observed that it is not necessary

to solve the MP to optimality at every iteration to produce valid

cuts. In fact, there is no incentive to do so at the beginning of

the algorithm because the relaxation is weak. They solved the

MP to ε-optimality at each iteration, with ε decreasing as the

algorithm proceeds to ensure global convergence. Lin and Üster

(2014) terminated the algorithm whenever the MP could not pro-

duce feasible solutions in the presence of an ε-optimality con-

straint, indicating that the upper bound lies within ε% of optimal-

ity. Kewcharoenwong and Üster (2014) obtained an encouraging

speedup with this approach in the context of fixed-charge relay

network design in telecommunications. 

An alternative is to solve the MP via (meta-)heuristics , which not

only reduces the time but also allows the generation of multiple

cuts per iteration, yielding faster improvement of the lower bound

( Raidl, 2015 ). This strategy may lead, however, to worse bounds

and a lack of control, which could prevent the generation of nec-

essary cuts. For an MILP, the bounds may be worse than those of

the LP relaxation of the original problem ( Holmberg, 1994 ). Thus,

the MP must be solved, at certain iterations, to optimality in order

to ensure global convergence. However, fewer of these iterations

are usually needed ( Poojari & Beasley, 2009 ). 

Constraint Programming ( CP ) is another possible approach. In

a workforce scheduling application, Benoist, Gaudin, and Rottem-

bourg (2002) showed that CP can be a better choice than mixed

integer programming (MIP) solvers, because of its greater abil-

ity to handle special constraints. Similarly, Corréa, Langevin, and

Rousseau (2007) considered the simultaneous scheduling and rout-

ing of automated guided vehicles, using CP to solve the scheduling

MP and an MIP solver to handle the routing subproblem. They ob-

served improvements of several orders of magnitude when the MP

was solved by CP. 

A few researchers have applied Column Generation ( CG ) to the

MP to handle certain structures more effectively, aiming for tighter

bounds at the root node of the branch-and-bound tree. Cordeau,

Stojkovi ́c, Soumis, and Desrosiers (2001b) proposed using BD to

handle linking constraints in a simultaneous aircraft routing and

crew scheduling problem. They formulated an aircraft routing MP

and a crew pairing subproblem. Because of their special struc-

ture, the linear relaxation of both problems were handled by CG
see Mercier, Cordeau, and Soumis, 2005 , for a similar application).

estrepo, Gendron, and Rousseau (2015) applied BD to solve a

ulti-tour activity scheduling problem; the MP was handled by CG

mbedded in a branch-and-price framework because of its large

umber of variables. The integration of CG into the BD framework

ppears theoretically challenging because of the simultaneous ad-

ition of rows and columns that are often interdependent. The dis-

ussion of this issue is beyond the scope of this paper; see Muter,

irbil, and Bülbül (2015) for further information. 

In the classical BD, one MP (an MILP) is solved to optimality

t each iteration. Each time, a new branch-and-bound tree is built

nd considerable time is likely spent revisiting candidate solutions

hat have been eliminated earlier. One can instead build a single

earch tree and generate valid cuts for the integer (and fractional)

olutions encountered inside the tree, attaining the same optimal

olution. This strategy, often referred to as Branch-and-Benders-cut

 B & BC ), yielded promising results (e.g., Fortz & Poss, 2009; Fis-

hetti, Salvagnin, & Zanette, 2010; de Camargo, de Miranda, & Fer-

eira, 2011; Ta ̧s kın & Cevik, 2013; de Sá, de Camargo, & de Miranda,

013; Gendron et al., 2014; Crainic et al., 2014; Pérez-Galarce,

lvarez-Miranda, Candia-Véjar, & Toth, 2014 ). In addition to the

umerical superiority of a modern implementation in comparison

ith the classical one, Naoum-Sawaya and Elhedhli (2013) showed

hat B&BC can make better use of the re-optimization tools of MILP

olvers. Various strategies can be used to produce the cuts. For ex-

mple, one can generate cuts in all feasible nodes or only when

ew incumbent solutions are found. It is necessary to establish

 trade-off between cut generation and branching effort. For in-

tance, Botton, Fortz, Gouveia, and Poss (2013) studied when to

enerate cuts, their results indicating that generating cuts at ev-

ry node of the search tree is inefficient because too many cuts

re added and too much time is spent solving the subproblems.

etter performance was achieved by finding as many violated cuts

s possible at the root node and subsequently checking for violated

enders inequalities only at integer nodes. 

We complete this section with two remarks. First, solving the

P via approximations, heuristics, or a single search tree may

ot be superior to the classical cutting-plane implementation,

specially in applications where solving the MP takes significantly

ess time than the dual component of the algorithm. The modified

pproaches may then enumerate many solutions that are usually

gnored by classical implementations. This is not the case, how-

ver, for most combinatorial optimization problems, for which

he acceleration strategies we discussed are the most popular to

andle the MP. Considering the cited researches throughout this

rticle, 33.33% of them implemented one of these strategies. In

articular, the single search tree has recently received considerable

ttention. This strategy leads to interesting research perspectives

egarding the cut-generation strategies, the branching rules, the
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ode selection, and the pruning strategies that have not been fully

xplored. 

Second, CP has been shown to be better than MIP techniques

or the MP if there are special constraints such as “all-different”

onstraints, logical relations, arithmetic expressions, integer divi-

ion, and expressions that index an array of values by a decision

ariable. Finally, one can use alternative formulations for the MP

o generate solutions more quickly, reducing the number of itera-

ions. This topic is addressed in Section 6.1 . 

.2. Subproblem level 

The subproblem can be large, inherit complex features, or de-

ompose into an excessive number of smaller subproblems. Vari-

us strategies have been proposed to solve the subproblem more

ffectively. 

The solution of the subproblem may be extremely com-

lex because it is a large-scale LP. Zakeri, Philpott, and Ryan

20 0 0) showed that suboptimal solutions of the dual subproblem

an be used to generate useful valid cuts. The authors observe

hat these inexact cuts are computationally less expensive and pro-

uce good results. In the same situation, commercial solvers (e.g.,

PLEX) prefer the interior point approach to the simplex method.

hus, the BD method may converge to an incorrect solution, since

he cuts are not necessarily associated with extreme points of the

ual polyhedron ( Yang & Lee, 2012 ). However, given the condition

ntroduced by Zakeri et al. (20 0 0) for inexact Benders cuts, conver-

ence can still be guaranteed. 

CG is another effective approach for large-scale linear subprob-

ems with special structure ( Cordeau et al., 2001b ). Mercier et al.

2005) showed that for large subproblems complete enumeration

s impossible, but that variables can be iteratively generated via

G. Similar applications of CG within a BD framework can be found

n Cordeau, Soumis, and Desrosiers (2001a) , Mercier and Soumis

2007) , and Papadakos (2009) . 

Subproblems with special structure can often be solved effi-

iently. One can derive a closed-form solution or apply special-

zed algorithms. Fischetti, Ljubic, and Sinnl (2016) observed that

he subproblem for the uncapacitated facility location problem can

educe to a knapsack problem, which has a closed-form solution.

imilarly, Randazzo, Luna, and Mahey (2001) obtained a series

f trivial network flow subproblems with a closed-form solution.

ontreras, Cordeau, and Laporte (2011) obtained a semi-assignment

roblem for each commodity in their hub location application;

hese problems could be solved more efficiently by a specialized

ethod compared to an LP solver. Kouvelis and Yu (1997) derived

hortest-path subproblems that were solved with Dijkstra’s algo-

ithm. 

The decomposition sometimes yields several independent sub-

roblems. One may consider solving only a subset of the subprob-

ems at each iteration, especially at the beginning of the algorithm.

o the best of our knowledge, there is no such strategy for com-

inatorial optimization problems, but Fábián (20 0 0) has studied a

imilar idea for convex programming problems. The algorithm ini-

ially calculates rough estimates of the function values and gradi-

nts. As it proceeds, the calculations become more accurate. 

In some applications, many subproblems are similar. Consider-

ng that the algorithm updates only the objective function of the

ual subproblem between two consecutive iterations, one can ex-

loit these similarities using re-optimization techniques: given the

olution to one subproblem, the next can be optimized in just a

ew iterations (see, e.g., Birge & Louveaux, 1997; Vladimirou, 1998 ).

owever, since the algorithm updates only the objective function

f the dual subproblem between one iteration and the next, fur-

her investigation of re-optimization techniques is required. 
When there are many subproblems, parallel computing tech-

iques are often used: the subproblems are solved in parallel

n different processors. One processor, the master , usually solves

he MP and coordinates the other processors, the slaves , which

olve the subproblems. The primal solution of the MP is passed

o the slave processors, and the objective function and the dual

nformation obtained from solving the subproblems is returned to

he master processor. Experiments have shown that this strategy

s effective (e.g., Ariyawansa & Hudson, 1991; Nielsen & Zenios,

997; Linderoth & Wright, 2003; Wolf & Koberstein, 2013; Pac-

ueau et al., 2012 ). The literature discusses some of the algorithmic

hallenges of this approach. For example, Linderoth and Wright

2003) implemented asynchronous communications in which the

P is re-optimized as soon as λ% of the cuts are received. Dantzig,

o, and Infanger (1991) used dynamic work-allocation: the next

dle processor gets the next subproblem based on a first-in-first-

ut strategy until all the subproblems are solved and the MP can

e recomputed with the added cuts. Nielsen and Zenios (1997) ex-

loited the structural similarities of the subproblems, applying

n interior point algorithm on a fine-grained parallel machine.

ladimirou (1998) implemented a partial-cut aggregation approach

o reduce the communication overheads. Chermakani (2015) ob-

erved that when the number of subproblems is considerably

arger than the number of available processors, so that some sub-

roblems must be solved sequentially, it may be better to aggre-

ate some of the subproblems. 

In summary, the simplex method is the most widely used al-

orithm for the subproblem. However, when the subproblem has

pecial structure, specialized algorithms are a better option. In ei-

her case, when the decomposition yields several independent sub-

roblems, parallelization is the method of choice. There has been

imited investigation of approximation and heuristic methods. Yet,

hen the subproblem is a large-scale LP that cannot be further

ecomposed and has no special structure, heuristics may yield

onsiderable speed-up. Constraint programming has also been a

rominent technique to solve subproblems with particular struc-

ures. This is discussed in Sections 9.1 and 9.2 . In terms of statis-

ics, 31.25% of the cited works in this article implemented one of

he outlined acceleration strategies, among which parallelization

nd specialized algorithms are the most popular techniques. 

. Solution generation 

The quality of the solutions for the set of complicating vari-

bles directly determines the number of iterations, as they are

sed to generate cuts and bounds. These solutions are traditionally

ound by exactly or approximately solving the regular MP. Three

pproaches have been proposed to improve the quality of the solu-

ions or generate them more quickly: (1) using alternative formu-

ations, (2) improving the MP formulation, and (3) using heuristics

o independently generate solutions or to improve those already

ound. Fig. 5 lists the techniques that we discuss. Note that, the

trategies are not mutually exclusive, and hybrid approaches may

ork well. A complete presentation of the hybrid strategies is be-

ond the scope of this article, however, since the appropriate com-

ination of strategies is problem-dependent. 

.1. Alternative formulation 

Altering the MP, albeit temporarily, provides the means to ad-

ress two main drawbacks in addressing it: (1) slow generation

f solutions that may be poor-quality and (2) instability. The two-

hase approach of McDaniel and Devine (1977) and the cross de-

omposition of Van Roy (1983) address the first drawback. The for-

er uses an approximation of the MP to generate solutions more
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Fig. 5. Strategies to generate solutions for the set of complicating variables. 
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quickly, while the latter uses an alternative MP to generate poten-

tially better solutions. 

McDaniel and Devine (1977) showed that valid Benders cuts can

be obtained from the solutions to the LP relaxation of the MP. They

applied the BD algorithm in two phases. In the first phase, the lin-

ear relaxation of the MILP MP is used to quickly generate solutions

and tighten the relaxed MP, and in the second phase the integral-

ity requirements are reintroduced and the solution process contin-

ues. The cross-decomposition algorithm ( Van Roy, 1983 ) exploits

the structure of both the primal and dual problems, combining the

advantages of Lagrangian relaxation and BD. It alternates between

two steps: (i) for a given y , the Benders subproblem (7) is solved

to get the dual multipliers π , and (ii) for a given π , the Lagrangian

subproblem is solved to produce a new y . After this alternation

is terminated, the solutions of both the Benders and Lagrangian

subproblems are used to generate new cuts for the Benders or La-

grangian MP. Again, convergence to optimality can only be ensured

by periodically solving the Benders MP. However, doing this less

often accelerates the solution process. 

Instability is another widely recognized drawback of the reg-

ular MP ( Birge & Louveaux, 1997; Zaourar & Malick, 2014 ), as it

can yield excessively slow convergence. Two reasons are evoked for

this phenomenon, the large initial steps and the excessive oscilla-

tion that occurs as the algorithm approaches the optimal solution

( Rubiales, Lotito, & Parente, 2013 ). Several studies aimed to miti-

gate this undesirable behavior by adding constraints to the MP or

changing the objective function. Regularized decomposition, trust-

region, and level decomposition strategies have been used to ob-

tain a stabilized MP formulation. 

Regularized decomposition was introduced by Ruszczy ́nski

(1986) and extended by Ruszczy ́nski and Świ ̧e tanowski (1997) . A

quadratic term is added to the MP objective function to keep the

solutions close to the current reference point, which is updated

whenever certain conditions are satisfied. Computational results

indicate that the method is efficient although it solves a quadratic

problem rather than a linear one, since it decreases the number

of expensive iterations ( Ruszczy ́nski & Świ ̧e tanowski, 1997 ). The

trust-region method can be thought of as a hypercube around a

reference solution at iteration k , denoted y k . The next solution

must stay within this “trusted region.” This is usually achieved

by adding the constraint || y − y k || ∞ 

≤ � to the MP; the reference

point y k and the trust-region bound � will be updated during the

algorithm (see Linderoth and Wright, 2003 , for an implementation,

computational results, and a proof of convergence). Level decom-

position was developed by Lemaréchal, Nemirovskii, and Nesterov

(1995) for nonsmooth convex optimization and adapted to stochas-

tic programming by Fábián and Sz ̋oke (2007) . Its goal is to dampen

the zigzagging behavior of the BD method with respect to the mas-

ter solutions. This is achieved by solving a modified MP that min-

imizes the Euclidean distance of its solution y from the previous

solution y k (initialized to y 0 ), while ensuring that the approximate

value of the next solution is not greater than a convex combi-

nation of the current best lower and upper bounds. A favorable
omparison of this method with the standard BD method, regular-

zed decomposition, and the trust-region approach was carried out

y Zverovich, Fábián, Ellison, and Mitra (2012) . 

The above stabilization techniques may not be directly ap-

licable to combinatorial optimization contexts. Santoso, Ahmed,

oetschalckx, and Shapiro (2005) demonstrated that a trust region

ith the � 2 - or � ∞ 

-distance either yields a quadratic MILP or is

ot meaningful for a 0–1 MILP MP. Thus, they used a trust region

hat bounds the Hamming distance between the current MP so-

ution and the previous one. However, since convergence cannot

e ensured in the presence of this constraint, they used it only in

he early iterations. Oliveira, Grossmann, and Hamacher (2014) ob-

erved an acceleration of up to 46% with the approach of Santoso

t al. (2005) . van Ackooij, Frangioni, and de Oliveira (2015) in-

tead stabilized the BD method via a proximal term (a trust re-

ion in the � 1 norm) or a level constraint rather than adding

uadratic terms to the objective function. In continuous problems

he quadratic proximal term provides second-order information to

he MP, but its impact in the combinatorial case tends to be in-

ignificant. The authors showed the potential of stabilization tech-

iques, particularly for large and difficult instances. Zaourar and

alick (2014) studied quadratic stabilization. This approach, com-

on in the context of constraint decomposition methods, could

rastically reduce the number of cuts, especially feasibility cuts.

he computational time may not decrease, however, due to com-

lexity of the method. 

In summary, an alternative master formulation is used in more

han 34% of the works cited in this paper. The two-phase ap-

roach has become one of the most popular acceleration strategies

or problems with time-consuming integer MPs (see e.g., Angulo,

hmed, & Dey, 2014; Rei et al., 2009; Papadakos, 2008; Cordeau

t al., 2006; Costa, 2005; de Sá et al., 2013; Sen, Krishnamoor-

hy, Rangaraj, & Narayanan, 2015 ). Algorithms based on the single-

earch-tree strategy often use this approach to tighten the root

ode and reduce the size of the tree (see e.g., Botton et al., 2013 ).

ross-decomposition has received much less attention, although a

ecent study by Mitra, Garcia-Herreros, and Grossmann (2016) has

emonstrated that it can be superior to the BD method when the

nderlying LP relaxation is weak. Stabilization techniques signifi-

antly reduce the number of iterations, but the cost of each itera-

ion may increase because of the additional complexities that they

ntroduce in the MP. This has usually prevented the use of stabi-

ization techniques in combinatorial contexts. 

Inexact methods offer a simple and efficient stabilization tool

hat may lead to a considerable time reduction. The success of

hese methods highlights the potential of heuristics, local branch-

ng in particular, for solving the MP or more thoroughly exploring

he neighborhood of the current solution to partially dampen the

scillations of the primal solutions. 

Finally, as the instability of the classical BD method, especially

n the early iterations, is mainly the result of a weak MP, strategies

hat strengthen the relaxation can mitigate the chaotic behavior.

hese strategies are the subject of the following subsection. 
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.2. Improving the master formulation 

After the projection and relaxation steps, the MP has no infor-

ation on the subproblems and provides a weak approximation of

he original feasible region. Therefore, we can expect erratic pro-

ression of the bounds and ineffective initial iterations. We can

artially overcome these drawbacks by modifying the decomposi-

ion (see Section 4 ). The strategies discussed in this section will

urther improve the convergence rate (see e.g., Crainic, Hewitt, &

ei, 2016; 2014 ). 

One way to strengthen the MP is to add VIs. Naoum-Sawaya

nd Elhedhli (2010) observed that this can significantly reduce

he solution time and the number of generated cuts (feasibility

uts in particular). As a result, a wider range of instances can

e solved. Saharidis, Boile, and Theofanis (2011) applied the BD

ethod to a refinery system, adding two groups of VIs to the ini-

ial MP. The total time reduction ranged from 26% to 76%. Tang,

iang, and Saharidis (2013) used VIs to improve the initial lower

ound by 21.39% to 208.95%. In addition, the number of instances

olved increased by 30%. Adulyasak, Cordeau, and Jans (2015) stud-

ed a production routing problem and added lower-bound lift-

ng inequalities to improve the initial lower bounds and solutions.

hese cuts provide information about the part of the original ob-

ective function that has been removed. The authors observed a

ignificant reduction in the time, the optimality gap and the num-

er of explored nodes. For other uses of VI see Ta ̧s kın and Cevik

2013) , Kewcharoenwong and Üster (2014) , Pishvaee, Razmi, and

orabi (2014) , Jenabi, Ghomi, Torabi, and Hosseinian (2015) , Emami,

oslehi, and Sabbagh (2016) , and Jeihoonian, Zanjani, and Gen-

reau (2016) . 

Feasibility cuts are undesirable because they do not improve

he lower bound. In some applications, one can avoid unbound-

dness of the dual subproblem by including a set of VIs that ex-

lude the infeasible solutions (see, e.g., Geoffrion & Graves, 1974;

irge & Louveaux, 1997; Contreras et al., 2011; de Sá et al., 2013 ).

his avoids the burden of deriving the feasibility cuts. It can also

educe the cost of solving the MP, since the addition of both op-

imality and feasibility cuts makes it more difficult to solve ( Wu,

artman, & Wilson, 2003 ). 

Once we fix the complicating variables, it may be possible to

ake the decisions in the remaining problem independently. Thus,

ultiple smaller subproblems can be solved separately. The clas-

ic BD method inserts a single cut into the MP per iteration by

ggregating the dual information gathered from all the subprob-

ems ( Van Slyke & Wets, 1969 ). An alternative approach is to add a

ut for each subproblem. This strategy, often referred to as multi-

ut reformulation , generally outperforms the single-cut approach: it

trengthens the MP more quickly and prevents the loss of informa-

ion in the aggregation step (see, e.g., Contreras et al., 2011; Tang

t al., 2013; Pishvaee et al., 2014; Sen et al., 2015; Jenabi et al.,

015 ). The size of the MP grows more rapidly, however, and the

rade-off between the number of iterations and the computational

ime is problem-dependent. Birge and Louveaux (1997) gave the

ule of thumb that the multi-cut is generally preferable when the

umber of subproblems is not much larger than the size of the di-

ension space of the master variables. Trukhanov et al. (2010) ex-

lored partial cut aggregation , in which the subproblems are di-

ided into | D | clusters and a cut is added for each cluster. They

oncluded that the best performance is attained for 1 < | D | < | S |,

here | S | is the number of subproblems. They did not offer a spe-

ific strategy for the clustering. Brandes (2011) showed that clus-

ering methods, in particular k-means and hierarchical clustering,

an reduce the number of major iterations. 

In summary, it is essential to strengthen the relaxed MP, and

Is are a powerful tool for this. Multi-cut reformulation is use-

ul when the subproblem can be further decomposed into smaller
roblems. Using both strategies will often be more efficient. It

hould be noted that the reviewed strategies in this section have

een used in 37.50% of the cited articles in this review paper. Fi-

ally, heuristics can be used to quickly tighten the MP by generat-

ng a set of initial cuts or multiple cuts per iteration. We discuss

hese strategies in the following subsection. 

.3. Heuristics 

Numerous modifications may be needed to develop an efficient

nd competitive BD method ( O’Kelly, Luna, Camargo, & Miranda,

014 ). Many researchers therefore apply heuristic procedures to

enerate solutions or, as a subordinate method, improve previously

enerated ones ( Botton et al., 2013; Gelareh, Monemi, & Nickel,

015; Kewcharoenwong & Üster, 2014; Oliveira et al., 2014; Ta ̧s kın

 Cevik, 2013 ). 

Heuristics are widely used as a warm-start strategy to gener-

te an initial set of tight cuts to strengthen the relaxed MP. Obvi-

usly, the selected heuristic should be appropriate for the problem

t hand ( Contreras et al., 2011 ). Lin and Üster (2014) observed that

he initial selection of cuts is important in the context of wire-

ess network design. They proposed a simple heuristic to gener-

te feasible solutions and a set of good initial cuts. Easwaran and

ster (2009) used a tabu search as a warm-start meta-heuristic

or a supply-chain network design problem; the convergence rate

nd the size of the instances solved were considerably increased.

 different warm-start approach is to generate particular solutions.

andazzo et al. (2001) applied a shortest-path algorithm to obtain

 special feasible solution to their local-access uncapacitated net-

ork design problem. Papadakos (2008) showed that convergence

an be significantly improved when the algorithm starts from an

nitial point that lies in the interior of the MP solution domain

ather than the initial MP solution itself. 

Heuristics are also used to explore the neighborhood of the cur-

ent MP solution as an intensification/diversification strategy. Rei

t al. (2009) use a local branching heuristic to simultaneously im-

rove the lower and upper bounds. They apply a limited number

f local branching steps to either determine that the neighborhood

ontains no feasible solutions to the original problem or provide

 pool of high-quality and diverse solutions. When the neighbor-

ood is infeasible, they exclude the infeasible region by adding

ombinatorial cuts, which are a better alternative to classical fea-

ibility cuts. When a pool of solutions is found, they are used to

enerate multiple optimality cuts. These cuts reduce the number

f major iterations and cause the lower bound to increase more

uickly. This strategy has also been applied to the closed-loop

upply chain problem ( Jeihoonian et al., 2016 ) and the sustain-

ble supply chain network design problem ( Pishvaee et al., 2014 ).

osta et al. (2012) gave general guidelines for the application of

euristics within the two-phase approach of McDaniel and Devine

1977) . The goal is to quickly generate extra cuts associated with

he heuristic feasible or infeasible solutions to reduce the need

or integer iterations. The authors suggested using simple heuris-

ics after each regular iteration of the BD method or whenever the

ncumbent solution is updated. The gains should compensate for

he additional time spent on the heuristics. 

Heuristics can be used to alleviate undesirable properties of the

P solutions. Wu et al. (2003) avoided the generation of feasibility

uts because they made the solution of the MP more expensive. It

s possible in their application to acquire additional supply capacity

t arbitrarily high prices, but convergence may be slow because of

he side effects of big-M coefficients. The authors applied a heuris-

ic to restore the feasibility of the solutions. The heuristic shifts

xcess demand from an infeasible subproblem to another source

i.e., to a different subproblem) so that a feasible solution can

e found quickly. Emami et al. (2016) used a heuristic to extract



810 R. Rahmaniani et al. / European Journal of Operational Research 259 (2017) 801–817 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a  

t  

i  

s  

o  

M  

w  

p  

y  

t  

p

 

(  

a  

t  

s  

t  

f  

p  

c  

p  

r  

o  

d  

e

 

e  

a  

t  

s  

c  

f  

f  

t

 

n  

a  

p  

e  

t  

W  

w

π
 

O  

T  

e  

t  

v  

π  

{  

k  

w  

(

 

a  

m  

t  

s  

c  

t  

i  

f  

n  

L  

i  
feasible solutions from infeasible MP solutions, considerably im-

proving convergence. 

The upper bounds obtained from heuristics are often better

than those obtained by the BD method itself, especially in the early

stages of the algorithm. Roussel, Ferland, and Pradenas (2004) suc-

cessfully accelerated the BD method by applying tabu search to the

original formulation to improve the upper bound. Santoso et al.

(2005) stated that when the algorithm approaches an optimal so-

lution, the various incumbent solutions differ in variables that

have a small impact on the objective function, and so the upper

bound changes little. They found that a simple fix-and-optimize

heuristic can yield a considerable acceleration. Improving the up-

per bound will also impact other parts of the algorithm. For in-

stance, Contreras et al. (2011) observed that their heuristic not

only improved overall convergence but also found better upper

bounds that help with the reduction testing procedures. Pérez-

Galarce et al. (2014) examined the interaction between the incum-

bent solution and the branching effort s. To improve the perfor-

mance of their B&BC algorithm, the authors used a heuristic to en-

hance the incumbent solution. 

In summary, heuristics are an important component of accel-

eration strategies. They are used in more than 25% of the cited

articles in this review paper. Heuristics, even simple ones, can

generate high-quality initial solutions and cuts, repair infeasible

solutions, improve the quality of the MP solutions, reduce the

computational cost of the MP and subproblem, and generate

multiple cuts per iteration. Moreover, the BD method can be used

to design effective heuristics; see Section 8 . 

7. Cut generation 

The number of iterations is closely related to the strength of

the cuts, i.e., the values selected for the dual variables. Researchers

have explored ways to select or strengthen the traditional feasibil-

ity and optimality cuts or to generate additional valid cuts. 

Magnanti and Simpson (1978) and Magnanti and Wong

(1981) were the first to consider the degeneracy of the sub-

problems, when the dual subproblem has multiple optimal solu-

tions that do not yield cuts of equal strength. Hence, to find the

strongest cuts, the solution of the dual subproblem must be ju-

diciously chosen at each iteration. Magnanti and Wong (1981) se-

lected a dual solution that dominates other possible cuts in terms

of Pareto-optimality. A Pareto-optimal solution produces the max-

imum value at a core point ˆ y , which is required to be in the rel-

ative interior of the convex hull of the subregion defined by the

MP variables. After solving the regular dual subproblem (7) , the

authors solve an auxiliary subproblem of the form (17) to find the

Pareto-optimal optimality cut. 

max 
π∈� m 2 

{ π T (d − B ̂

 y ) : π T D ≤ c, π T (d − B ̄y ) = Q( ̄y ) } , (17)

where Q( ̄y ) indicates the optimal cost of the regular subprob-

lem for the current MP solution ȳ . Although this approach has

proven effective in practice (e.g., Mercier et al., 2005 ), it must

solve the secondary problem (17) , which may be numerically in-

stable and time-consuming. Additionally, it may be difficult to find

a core point. This difficulty can be overcome by using approximate

core points ( Santoso et al., 2005 ), arbitrarily fixing components of

the core-point vector ( Mercier et al., 2005 ), or finding alternative

points for a given problem structure ( Papadakos, 2008 ), although

these methods do not guarantee the generation of Pareto-optimal

cuts. 

Papadakos (2008) proposed an algorithmic modification to cir-

cumvent the computational difficulties of Magnanti and Wong

(1981) ’s approach. The author showed that if a new core point is

utilized at each iteration, Pareto-optimal cuts can be obtained from
n independent formulation of the Magnanti–Wong cut genera-

ion procedure. This formulation removes the equality constraint

n (17) that implies the dependency on the solution of the regular

ubproblem (7) . The author showed that any convex combination

f a valid initial core point and the MP solution gives an alternative

agnanti–Wong core point. de Sá et al. (2013) then showed that

hen the MP solution is rendered infeasible by the primal sub-

roblem, a clever choice of the convex-combination weights can

ield significant speed-ups. They chose the weights in such a way

hat the convex combination of the current MP solution with the

revious Magnanti–Wong point results in a feasible subproblem. 

Fortz and Poss (2009) and Naoum-Sawaya and Elhedhli

2013) generated Pareto-optimal cuts from the points obtained by

n analytic-center cutting plane method. In other words, the ex-

racted analytic centers are used as core points. Note that the dual

ubproblem is equivalent to that of Papadakos (2008) , although

his is not directly mentioned. The procedure has great potential

or accelerating the classical BD algorithm in the context of ca-

acitated facility location and multi-commodity capacitated fixed

harge network design problems. However, its effectiveness de-

ends on the quality of the core points and the efficiency of the

e-optimization techniques. Moreover, similarly to the methodol-

gy of Magnanti and Wong (1981) and Papadakos (2008) , they pro-

uce classical feasibility cuts based on the random selection of an

xtreme ray to cut-off the infeasibility. 

Gelareh et al. (2015) generated analytic center points at ev-

ry integer node of their B&BC algorithm to deal with degener-

cy. They used analytic centers and their convex combination with

he current MP solution to generate multiple cuts. The authors pre-

ented a box method to deal with degeneracy. A constraint is in-

luded in the auxiliary subproblem to bound the dual objective

unction, while the dual solution must be at least κ units distant

rom the actual optimal dual. The cuts produced are inexact, but

he method performed well. 

Sherali and Lunday (2013) developed the maximal nondomi-

ated cut generation scheme by formulating the cut selection as

 multi-objective optimization problem. They showed that a small

erturbation in the right-hand side of the primal subproblem is

nough to give a maximal nondominated optimality cut, avoiding

he need to solve the secondary subproblem as in Magnanti and

ong (1981) and Papadakos (2008) . Given a goal-programming

eight μ > 0, the dual subproblem is 

max 
∈� m 2 

{ π T (d − B ̄y ) + μπ T (d − B ̂

 y ) : π T D ≤ c} . (18)

liveira et al. (2014) considered the definition of the weight μ.

he authors observed that the solutions obtained in the early it-

rations gave poor descriptions of the project cost, which is what

he cuts attempt to approximate. They iteratively adjusted μ to fa-

or solutions that focus on improving the original objective value
T (d − B ̄y ) rather than (18) . To ensure convergence, the sequence

 μ(k ) } k =1 ,..., ∞ 

must satisfy 
∑ 

k =1 ,..., ∞ 

μ(k ) → ∞ and μ( k ) → 0 as

 → ∞ . The authors obtained results that compared favorably

ith those of Sherali and Lunday (2013) and Magnanti and Wong

1981) . 

Better feasibility cuts have also been investigated. Codato

nd Fischetti (2006) considered a binary problem where the BD

ethod generates feasibility cuts exclusively. The authors observed

hat these cuts are weak because of the big-M constraints, and

howed that stronger cuts, referred to as combinatorial Benders

uts , can be obtained by searching for minimal infeasible subsys-

ems for the MP solutions. Experiments on two classes of mixed-

nteger problems indicated significant improvements in the bounds

or the LP relaxation of the MP. Note that combinatorial cuts are

ot in general stronger than the classical feasibility cuts. Yang and

ee (2012) observed that the slow convergence of the BD algorithm

s due to the selection of weak feasibility cuts. They extended the
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ominance rule of Magnanti and Wong (1981) in order to extract

ighter feasibility cuts. However, this involves solving an auxiliary

ilinear problem, which can be computationally expensive. 

Fischetti et al. (2010) used an idea from Fukuda, Liebling, and

argot (1997) : finding the most-violated optimality cut is equiva-

ent to finding an optimal vertex of a polyhedron with unbounded

ays. Fischetti et al. (2010) thus reformulated the subproblem as

 feasibility problem where the optimality and feasibility cuts are

erived by searching for minimal infeasible subsystems: 

max 
∈� m 2 ,π0 ∈� 1 

{ π T (d − B ̄y ) − π0 ̄η : π T D ≤ π0 c, w 

T π + w 0 π0 = 1 } , 
(19) 

here η̄ is the current value of η, and w is a vector of normaliza-

ion coefficients. The generated cut takes the form π̄ T (d − By ) ≤
¯ 0 η. This approach simultaneously generates optimality and fea-

ibility cuts without solving an auxiliary subproblem. It compared

avorably with the classical cut selection scheme. 

Some algorithms iteratively generate multiple cuts to obtain

pecific desirable characteristics. Saharidis, Minoux, and Ierapetri-

ou (2010) considered low-density cuts, i.e., cuts that include only

 few MP variables. The ability of such cuts to strengthen the

elaxed MP tends to be limited. To improve these cuts, the au-

hors developed a covering cut bundle cut-generation procedure. At

ach iteration, it produces a set of low-density BD cuts that cover

% of the MP variables. The authors observed that adding several

ow-density cuts is better than adding a single high-density cut

orresponding to the sum of the low-density cuts because it en-

ures a level of diversification in the cuts. Saharidis and Ierapetri-

ou (2013) observed that it can be computationally less expensive

o cover all the MP variables. Their strategy, referred to as max-

mum density cut generation , generates a cut that involves all the

P decision variables that are not covered in the BD cut. The au-

hors observed that this significantly decreases the number of iter-

tions and the time requirement for two different scheduling prob-

ems. Saharidis and Ierapetritou (2010) considered a case where

btaining optimality cuts using the classical BD method is hard.

he bounds progress slowly because numerous feasibility cuts are

enerated before an initial feasible solution yielding an optimality

ut is found. Whenever a feasibility cut is generated, they apply a

aximal feasible subsystem to produce an optimality cut. This cut

s produced by relaxing a minimum number of constraints in or-

er to obtain a feasible subproblem. The authors observed signifi-

ant improvements in convergence. The weakness of this strategy

s that the reduction in the number of iterations may not always

ompensate for the additional time required to solve the auxiliary

ILP subproblem. 

In summary, the classical cut-generation scheme can be inef-

cient, particularly when the subproblems are degenerate or in-

easible. Thus, 31.25% and 17.71% of the cited articles in this re-

iew paper have used one of the mentioned strategies to generate

ptimality and feasibility cuts, respectively. Almost every applica-

ion of the BD that yields degenerate subproblems uses one of the

trategies we have discussed to generate Pareto-optimal cuts. How-

ver, generating Pareto-optimal cuts may not yield a net computa-

ional advantage, since the reduction in the number of iterations

ight not compensate for the increase in the number of subprob-

ems at each iteration ( Mercier & Soumis, 2007 ). Strategies such as

aximal nondominated cut generation may be more efficient since

hey eliminate the need to solve the auxiliary subproblem. Re-

arding the feasibility cuts, the strategies based on nondominated

uts have focused on optimality cuts; feasibility cuts are found

ased on a random selection of the extreme rays. Only the strategy

hat generates combinatorial cuts for subproblems with big-M con-

traints has proven its worth in practice. Moreover, feasibility and

ptimality cuts are usually treated separately. To the best of our
nowledge, only Fischetti et al. (2010) have developed a unified

ramework for both types of cuts. Clearly, further research is nec-

ssary. 

. Benders-type heuristics 

Because of time and memory limitations, the execution of the

D method might be stopped before its convergence is established.

oreover, in many practical applications, decision-makers do not

eed a provably optimal solution, a good feasible solution being

eemed sufficient. Such a solution is often obtained somewhat

arly in the solution process. 

From a heuristic point of view, the BD method is an attractive

ethodology because it can take advantage of special structures

nd provides a rich framework for the design of efficient search

echanisms ( Côté & Laughton, 1984; Raidl, 2015 ). The method

lso overcomes many drawbacks of heuristics such as the inabil-

ty to verify the solution quality and the difficulty to reduce the

earch space by using dual information ( Boschetti & Maniezzo,

009; Easwaran & Üster, 2009 ). These factors have promoted the

evelopment of algorithms that we refer to as Benders-type heuris-

ics . We now discuss some of these. 

Applying Lagrangian relaxation to the Benders cuts has been a

opular approach, especially when the MP without cuts has a spe-

ial structure ( Minoux, 1984; Paula & Maculan, 1988 ). Côté and

aughton (1984) applied Lagrangian relaxation to the feasibility

nd optimality cuts so that the remaining constraint sets have a

pecial structure and specialized algorithms can be applied. Aardal

nd Larsson (1990) proposed a heuristic for a multi-item dynamic

roduction planning problem. They created structured subprob-

ems and MPs, priced out the BD cuts using Lagrangian multipliers

n order to maintain the problem structure, and used a subgradient

rocedure to update the Lagrangian multipliers. The algorithm at-

ained an average deviation of 2.34% from the optimum. Holmberg

1994) studied different approximations for the Benders MP, con-

luding that its Lagrangian dual cannot yield better bounds than

he Lagrangian dual of the original problem even if all the feasibil-

ty and optimality cuts are present in the MP. 

An alternative to the above approaches is to first apply La-

rangian relaxation and then use the BD method to optimize the

agrangian dual subproblem. Pinheiro and Oliveira (2013) tackled

roblems with complicating constraints that are challenging for

he BD method. They first applied Lagrangian relaxation to these

onstraints and then used the BD method to optimize the problem

t each iteration of the dual Lagrangian algorithm. Wang, McCal-

ey, Zheng, and Litvinov (2016) applied a similar methodology to

olve a corrective risk-based security-constrained optimal power

ow problem. The results of both studies point to the ability of

he approach to handle large-scale, complex problems. Further re-

earch in this area would thus be worthwhile. 

One challenge in large-scale problems is the need to solve

 sequence of difficult integer MPs. Many researchers have ex-

lored the use of meta-heuristics for the MPs. Poojari and Beasley

2009) used a genetic algorithm combined with a feasibility pump.

his enabled the authors to add multiple cuts per iteration, which

ielded larger increases in the lower bounds. Although the MP

as never solved to optimality, good results were obtained. Jiang,

ang, and Xue (2009) used a similar hybridization, based on tabu

earch, for multi-product distribution network design. A genetic-

D hybrid algorithm for vehicle routing and scheduling ( Lai, Sohn,

seng, & Bricker, 2012 ) and the capacitance plant location prob-

em ( Lai, Sohn, Tseng, & Chiang, 2010 ) has greatly reduced the

omputational time in comparison with the classical BD method.

oschetti and Maniezzo (2009) solved both the MP and the

ubproblem heuristically; their algorithm was competitive with

tate-of-the-art meta-heuristics. Note that these strategies do not
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provide a valid lower bound, and thus, to assess the solution qual-

ity, the MP must be solved to optimality or approximated from

below. 

Proximity Benders is a decomposition heuristic proposed by

Boland, Fischetti, Monaci, and Savelsbergh (2016) . The authors ob-

served that the BD method rarely improves the incumbent solu-

tion, and finding good solutions may require considerable comput-

ing time. The authors used a proximity heuristic to more frequently

improve the upper bound obtained from the sequence of MP so-

lutions. Computational experiments demonstrated the potential of

the method. Kudela and Popela (2015) proposed a genetic algo-

rithm where the BD method is used to take advantage of the block

structure. The authors reported favorable results in comparison

with the genetic algorithm without the decomposition. Behnamian

(2014) proposed a Benders-based variable neighborhood search al-

gorithm for a multi-objective scheduling problem. The goal was to

accelerate the assessment of the estimated improvement of each

neighborhood. The new heuristic outperformed a variable neigh-

borhood search, a tabu search, and a hybrid of these two methods,

particularly on larger instances. 

Another approach solves the LP relaxation of the MP and uses

round-off heuristics to find an integer solution. Pacqueau et al.

(2012) use the BD method to solve the linear relaxation and then

fix some of the variables to their upper/lower bounds. Their al-

gorithm iterates until an integer solution is obtained. They solved

problems with up to 10 million integer variables in less than 27

minutes with an average accuracy of 0.2%, while CPLEX could

handle only instances with fewer than 50 0,0 0 0 integer variables.

This highlights the potential of efficient Benders-type heuristics for

problems with computationally intractable MPs, particularly those

with tight linear relaxations. 

In summary, the BD method enables heuristics to take advan-

tage of special structures and use dual information. Many Benders-

type heuristics either solve the MP heuristically or use approx-

imate MP formulations that do not provide global convergence.

Benders-type heuristics can handle a wider range of structures

than the BD method. However, these algorithms cannot find a

provably optimal solution. We discuss extensions of the BD al-

gorithm that can exactly solve a wider range of problems in

Section 9 . 

9. Extensions of the classical Benders decomposition method 

The classical BD algorithm was proposed for certain classes of

MILPs for which the integer variables were considered to be com-

plicating, and standard duality theory could be applied to the sub-

problem to develop cuts. Extensions of the method have allowed it

to address a broader range of optimization problems, including in-

teger subproblems (e.g., Carøe & Tind, 1998 ), nonlinear functions

(e.g., Cai et al., 2001; Geoffrion, 1972 ), logical expressions (e.g.,

Eremin & Wallace, 2001 ), multi-stage programming (e.g., Lorenz &

Wolf, 2015 ), and stochastic optimization (e.g., Van Slyke & Wets,

1969 ). When applied to stochastic problems the BD method is

commonly referred to as L-shaped decomposition . It enables such

problems to be decomposed by the realization of the uncertain

parameters. Many algorithms for these important and challenging

problems rely heavily on its premises ( Ruszczy ́nski, 2003 ). We have

already discussed the literature on this variant, which is equivalent

to the classical BD method. In this section, we discuss the exten-

sions to problems with discrete subproblems, logical expressions,

and nonlinear terms as well as multi-stage programming. 

9.1. Discrete subproblems 

When some of the projected variables are required to be

integer, standard duality theory cannot be applied to derive the
lassical Benders cuts. A different theoretical framework or mod-

fications to the generation scheme are needed to handle integer

ubproblems effectively. 

When the complicating variables are required to take 0–1 val-

es, one can use lower-bounding functions (LBF) instead of the reg-

lar optimality cuts ( Laporte & Louveaux, 1993 ). These constraints

nforce a change to the current solution or the acceptance of its

ssociated cost. They usually take the form 

≥ (Q( ̄y ) − L ) 

( ∑ 

a ∈ A 1 
y a −

∑ 

a ∈ A 0 
y a − | A 1 | 

) 

+ Q ( ̄y ) , (20)

here Q( ̄y ) is the cost of the subproblem for the given solution

¯ , A 1 and A 0 are respectively the variables with values of 1 and 0

n ȳ , and L is a lower bound on Q ( y ) over y . The BD method with

BF cuts (20) is also applicable to problems where the subproblem

an be evaluated with a closed-form analytical formula. Given the

numerative nature of (20) , it is usually complemented with other

Is to improve the lower bound. A common strategy is based on

olving the linear relaxation of the subproblem to generate regular

ptimality cuts ( Cordeau et al., 2001b; Mercier & Soumis, 2007;

apadakos, 2008 ). Moreover, the optimality cut (20) depends on

he exact solution of Q( ̄y ) and gives no useful information on the

ther y solutions. These issues are partly addressed by Angulo et al.

2014) . 

A similar variant of the classical BD method, often referred to

s combinatorial Benders decomposition , likewise does not use the

ual information to generate cuts. This variant can handle prob-

ems where the MP is a 0–1 integer program and the subproblem

s a feasibility problem (i.e., a problem with no objective function).

t excludes the current MP solution from further consideration via

ombinatorial cuts , which usually take the form ∑ 

 ∈ A : ̄y a =1 

( 1 − y a ) + 

∑ 

a ∈ A : ̄y a =0 

y a ≥ 1 , (21)

onstraints of the form (21) are frequently used in the BD method

s feasibility cuts. They are often strengthened according to the

tructure of the application, e.g., nonlinear power design in green

ireless local networks ( Gendron et al., 2014 ), lock scheduling

 Verstichel, Kinable, De Causmaecker, & Berghe, 2015 ), strip pack-

ng ( Côté, Dell’Amico, & Iori, 2014 ), and radiation therapy ( Ta ̧s kın

 Cevik, 2013 ). 

Carøe and Tind (1998) used general duality theory to reformu-

ate the subproblems, using VIs based on dual price functions to

roduce the BD cuts. They showed how such functions can be

btained when the subproblem is solved via standard techniques

uch as branch-and-bound or cutting planes. Sherali and Fraticelli

2002) considered applications with 0–1 mixed integer subprob-

ems. They showed that the classical BD method is applicable if a

onvex hull representation of the constrained region is available.

hey employed the reformulation–linearization technique and lift-

nd-project cuts as a sequential convexification procedure for the

ubproblems. The cuts generated by these two methods were func-

ions of the MP variables and were globally valid, which could lead

o a finite convergent BD algorithm. Sen and Higle (2005) applied

isjunctive programming to produce a convex characterization for

he discrete subproblems. They showed that VIs generated for a

iven MP solution and a particular subproblem can be used to ob-

ain VIs for any other solution or subproblem. This result can be

sed to define the cut-generation procedure in an overall BD ap-

roach. This approach was extended by Sen and Sherali (2006) ,

ho showed how branch-and-cut algorithms can be used for the

ubproblems. 

We conclude with a remark on solving the integer subproblems.

euristics have proven their worth in accelerating the BD method,

articularly when the subproblem reduces to a feasibility-checking
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rogram or generates more feasibility cuts than optimality cuts

 Osman & Baki, 2014 ). Heuristics can rapidly detect infeasibility

nd avoid the exact solution of difficult subproblems (e.g., Luong,

015 ) or find approximate optimality cuts quickly (e.g., Raidl,

aumhauer, & Hu, 2014 ). In the latter case additional refinement

s required, since the cuts may eliminate optimal solutions. On the

ther hand, CP is widely used to handle feasibility subproblems

ith special constraints because of its ability to handle those

onstraints and because it identifies infeasibility more quickly than

raditional MIP-based approaches can (see e.g., Jain & Grossmann,

001; Maravelias & Grossmann, 2004 ). 

.2. Logic-based Benders decomposition 

There is a growing interest in optimization models that include

ogic relations. These models can usually be transformed into

egular optimization models, but the extra variables and big-M

onstraints often yield a weak formulation. Furthermore, one can-

ot always obtain a continuous linear subproblem; it may contain

ome integer variables and nonlinear functions. In these cases,

tandard linear duality cannot be used to develop classical BD cuts.

Hooker and Ottosson (2003) and Hooker (2011) introduced an

xtension known as logic-based Benders decomposition ( LBBD ). The

BBD method is similar to the classical BD method. It decomposes

 given problem into an MP and one or many subproblems, and it

ses constraint-generation techniques to gradually reduce the so-

ution space of the relaxed MP. However, each subproblem is an

inference dual” problem that finds the tightest bound on the MP’s

ost function implied by its current solution. This bound is then

sed to generate cuts that are passed back to the MP. If the MP so-

ution satisfies all the bounds produced by the subproblems, con-

ergence has been achieved; otherwise, the process continues. 

A major advantage of the LBBD method is that the subprob-

em needs not take a specific form: it can be an MILP ( Roshanaei,

uong, Aleman, & Urbach, 2017 ), a CP ( Hooker, 2005 ), an NLP

 Wheatley, Gzara, & Jewkes, 2015 ), or a feasibility-checking prob-

em ( Harjunkoski & Grossmann, 2002 ). However, the LBBD method

oes not have a standard template for the production of valid cuts.

nstead, they must be tailored to the problem at hand, typically

ased on knowledge of its structure. For some problems simple

uts exist ( Hooker, 2007 ), but one must balance their effective-

ess with the ease of extraction ( Zarandi, 2010 ). It has been shown

hat The LBBD method can outperform state-of-the-art MIP and CP

olvers in various applications, often by several orders of magni-

ude (e.g., Jain & Grossmann, 2001 ). It has been applied to a range

f problems, including planning and scheduling (e.g., Hooker, 2007;

enoist et al., 2002 ), facility location/fleet management ( Zarandi,

010 ), radiation therapy ( Luong, 2015 ), transportation network de-

ign ( Peterson & Trick, 2009 ), and the minimal dispatching prob-

em of automated guided vehicles ( Corréa et al., 2007 ). It is worth

entioning that the B&BC framework discussed in Section 5.1.2 is

ften referred to as the branch-and-check method in context of

BBD ( Beck, 2010; Thorsteinsson, 2001 ). 

.3. Generalized Benders decomposition 

Many optimization problems involve nonlinear functions and

onstraints. If the problem is easily linearized or the nonlinearity

ccurs only in the domain of the complicating variables, it can be

olved via the classical BD method ( Cai et al., 2001; Fontaine &

inner, 2014; Osman & Baki, 2014 ). Specifically, whenever the sub-

roblem takes the form of a continuous linear formulation. Other-

ise, an extended BD method is necessary. 

Geoffrion (1972) proposed Generalized Benders Decomposition 

 GBD ). It can solve nonlinear problems for which the subproblem is
 convex program, because dual multipliers satisfying strong dual-

ty conditions can be calculated for such problems ( Bazaraa, Sher-

li, & Shetty, 2013 ). It is also particularly appealing for nonconvex

onlinear problems that can be convexified after fixing a subset of

ariables ( Costa, 2005 ). 

Sahinidis and Grossmann (1991) showed that the GBD method

ay not lead to a global or even local optimum for MINLP

roblems. Specifically, when the objective function and some of

he constraints are nonconvex or when nonlinear equations are

resent, the subproblem may not have a unique local optimum

nd the MP may cut off the global optimum. Rigorous global op-

imization approaches can be used if the continuous terms have

 special structure (e.g., bilinear, linear fractional, concave sepa-

able). The basic idea is to use convex envelopes (or underesti-

ators) to formulate lower-bounding convex MINLPs. These are

hen integrated with global optimization techniques for contin-

ous variables, which usually take the form of spatial branch-

nd-bound methods (see Grossmann, 2002, for further details ).

imilarly, Grothey, Leyffer, and McKinnon (1999) observed that a

implistic application of the GBD algorithm to a convex nonlin-

ar problem may converge to a nonstationary point. They showed

hat the convergence failure results from the way in which the in-

easible subproblems are handled, and they proposed a feasibility

estoration procedure. 

.4. Nested Benders decomposition 

The Nested Benders Decomposition ( NBD ) method is based on the

dea of applying the BD method to a problem more than once.

t is particularly appropriate for multi-stage (stochastic) problems

 Birge, 1985 ) in which each pair of adjacent stages can be con-

idered “separately”. The NBD views the scenario tree as a set of

ested two-stage problems and applies the BD method recursively.

very problem associated with an inner node in the tree is both

P to its children and a subproblem of its parent. It is necessary

o choose the sequencing protocols: after solving the problems at a

iven stage, one can either push primal information down toward

he leaf nodes or pass dual information up toward the root node.

his issue and some acceleration strategies are addressed by Wolf

2014) . 

The NBD method can also be applied to deterministic single-

tage problems, particularly when one wishes to simplify the MP

y reducing the number of integer variables. For example, Naoum-

awaya and Elhedhli (2010) applied the BD method to obtain a bi-

ary MP and a mixed integer subproblem. They then applied the

D method to the subproblem to obtain an integer MP and a linear

ubproblem. 

0. Conclusions and future research 

We have presented a state-of-the-art survey of the BD method.

e have discussed the classical algorithm, the impact of the

roblem formulation on its convergence, and the relationship to

ther decomposition methods. We have developed a taxonomy

o classify the literature on acceleration strategies, based on the

ain components of the algorithm, which provided rich guidelines

o analyze various enhancements, identifying shortcomings, trends

nd potential research directions. We have also discussed the use

f the BD to develop efficient (meta-)heuristics, described the lim-

tations of the classical algorithm, and presented extensions en-

bling its application to a broader range of problems. 

The BD method was originally proposed for MILPs with con-

inuous subproblems, and it has since been extended to handle

 wider range of problems such as nonlinear, integer, multi-stage,

nd constraint programming problems. Four main classes of accel-

ration strategies have been developed to enhance the classical al-
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gorithm: modifying the decomposition, solving the MP and sub-

problem more effectively, generating stronger cuts, and extracting

better solutions. The effectiveness of these strategies is problem-

dependent, and a combination of them usually gives the best re-

sults. The BD method has also been used to develop efficient

heuristics for complex problems, particularly those that numeri-

cally or structurally are out of reach of the method. This is not

however to say that research into the BD is over. There are still

many challenges and open questions. 

Generally speaking, the BD method has been suitable for prob-

lems in which temporarily fixing the complicating variables makes

the remaining problem significantly easier to handle by, e.g., be-

coming suitable for specialized algorithms or offering the oppor-

tunity to transform a nonconvex problem into a convex one. The

BD method appeared particularly appropriate for problems with a

“few” complicating (normally 0–1) variables and so many contin-

uous variables that solving the problem as a whole is inefficient.

There are many examples of such problems in stochastic program-

ming. The range of problem settings addressed is also expanding,

however. Moreover, many problems suffer from having weak lin-

ear relaxations and numerical instability as a result of big–M con-

straints and the binary variables used to turn them on and off. The

BD method can handle such problems by moving the big–M con-

straints to the subproblems and using specialized cuts to represent

them. The BD algorithm has also been applied to bilevel optimiza-

tion problems that cannot be transformed via the Karush–Kuhn–

Tucker optimality conditions into single-level problems ( Saharidis

& Ierapetritou, 2009 ). Moreover, there are interesting optimization

problems for which some of the constraints are not known in ad-

vance and must be generated iteratively. In other cases the sub-

problem does not have an amenable formulation but can be ob-

tained via a closed-form analytical formula. We are aware of only

one survey article focusing on the applications of the BD method,

and it restricted its scope to fixed-charged network design prob-

lems ( Costa, 2005 ). There is certainly a need for a comprehensive

synthesis of the various applications of the BD algorithm. 

The acceleration strategies are all problem-dependent, so they

are all part of the BD toolbox and their interconnections are impor-

tant. A better understanding of these interconnections could have a

considerable impact on the convergence rate. There is also a need

for comprehensive research into the acceleration methodologies to

better understand their limitations and implications. This is cer-

tainty true for more recent strategies, e.g., decomposition and cut

generation schemes. 

Strategies that tighten the MP usually add inequalities only

once, before the initial iterations. Given the encouraging results ob-

tained, it would be interesting to explore the use of more advanced

cutting-plane methods to further tighten the MP at each iteration.

The proper sequencing of the VIs and the classical BD cuts would

be of great importance. 

Tightening the subproblem is another effective acceleration

strategy, since stronger cuts will be generated. We are aware of

only one relevant study, Bodur, Dash, and Luedtke (2014) that it-

eratively generate Gomory mixed-integer cuts to tighten the sub-

problem. We encourage further research in this area. We note that

one can solve the linear relaxation of the original problem with

a cutting-plane method, adding VIs that involve the continuous

variables. After the decomposition, these VIs will be moved to the

subproblem, and this can yield a pronounced improvement in the

quality of the Benders cuts. Moreover, one can use the partial de-

composition to iteratively generate VIs for the subproblems, pro-

vided the subproblem retained in the MP gives VIs for the pro-

jected subproblems as well. 

In terms of generating solutions for the set of complicating vari-

ables, we are not aware of any study showing how to obtain better

cuts via a careful selection from the multiple optimal solutions of
he MP or showing how to modify the MP to generate solutions

ith specific characteristics, e.g., geometrically centered solutions.

hese two ideas have been successfully applied in the context of

antzig–Wolfe decomposition (e.g., Holloway, 1973; Nemhauser &

idhelm, 1971 ). 

Sometimes the subproblem further divides into several inde-

endent subproblems that can be optimized concurrently. The

iterature on parallel algorithms for combinatorial optimization

roblems indicates that the parallel variants of the BD algorithm

re still in their infancy. The current model is the master-slave

aradigm, which is not the most efficient strategy ( Crainic, 2015 ).

xecuting heuristics in the inner loop of the BD method or hy-

ridizing the algorithm with other methods can yield tremendous

mprovements in the convergence rate. These approaches have

een developed in a sequential framework, although they can be

un almost independently of the main BD algorithm. Therefore, the

evelopment of new parallel algorithms, particularly in cooperative

rameworks, would be worthwhile. 

The BD decomposition often yields subproblems with identi-

al dual polyhedra. In this situation, the solution of any subprob-

em gives valid cuts for the other subproblems. To the best of our

nowledge, this information has not yet been used in an accel-

ration strategy. It should be interesting to develop a strategy in

hich only some of the subproblems are solved at each iteration

nd their solutions are used to generate cuts for other subprob-

ems. Clearly, the main challenges are the selection of the set of

epresentative subproblems and the demonstration of the conver-

ence of the algorithm. 

There has been limited research into stabilization techniques for

he BD method in the context of combinatorial optimization. All

he approaches surveyed were based on binary complicating vari-

bles, and state-of-the-art strategies for combinatorial problems,

ttempt to stabilize the MP only at the beginning of the algorithm.

here is thus a need for more effective techniques in more general

ettings. One can take advantage of stabilization strategies devel-

ped for continuous problems by first solving the linear relaxation

f the MP. Although this idea has not yet been explored, it may

rove effective. 

There are various BD extensions for which researchers have ex-

lored ways to enhance them. We plan to survey these enhance-

ents in a future article. 
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