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Abstract. Decomposition algorithms such as Lagrangian relaxation and Dantzig-Wolfe decomposition are
well-known methods that can be used to generate bounds for mixed-integer linear programming problems.
Traditionally, these methods have been viewed as distinct from polyhedral methods, in which bounds are
obtained by dynamically generating valid inequalities to strengthen an initial linear programming relaxation.
Recently, a number of authors have proposed methods for integrating dynamic cut generation with various
decomposition methods to yield further improvement in computed bounds. In this paper, we describe a frame-
work within which most of these methods can be viewed from a common theoretical perspective. We then
discuss how the framework can be extended to obtain a decomposition-based separation technique we call
decompose and cut. As a by-product, we describe how these methods can take advantage of the fact that
solutions with known structure, such as those to a given relaxation, can frequently be separated much more
easily than arbitrary real vectors.

Key words. Integer Programming – Dantzig-Wolfe Decomposition – Lagrangian Relaxation – Branch and
Cut – Branch and Price – Decomposition Algorithms

1. Introduction

In this paper, we discuss methods for computing bounds on the value of an optimal
solution to a mixed-integer linear program (MILP). Computing such bounds is an essen-
tial element of the branch and bound algorithm, which is the most effective and most
commonly used method for solving general MILPs. Bounds are generally computed by
solving a bounding subproblem, which is either a relaxation or a dual of the original prob-
lem. The most commonly used bounding subproblem is the linear programming (LP)
relaxation. The LP relaxation is often too weak to be effective, but it can be strengthened
by the addition of dynamically generated valid inequalities. Alternatively, traditional
decomposition techniques, such as Dantzig-Wolfe decomposition [19] or Lagrangian
relaxation [22, 14], can also be used to obtain improved bounds.

Methods based on cut generation have traditionally been considered distinct from
decomposition methods, but several authors have suggested combining the two ap-
proaches to yield further improvements (these contributions are reviewed in Section 3).
In this paper, we present a framework that shows how these hybrid methods can be
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viewed from a common theoretical perspective as generalizations of the cutting plane
method. From this viewpoint, we show how various methods from the literature are
related, as well as discuss a method called decompose and cut that follows a similar
paradigm. One element common to these methods is the ability to take advantage of
the fact that the separation problem is often much easier for solutions with combina-
torial structure than for arbitrary real vectors. This can simplify the implementation of
these methods and allow more rapid development than with traditional cutting plane
implementations. We discuss the importance of this and provide several examples of its
usefulness.

The goal of this paper is not to provide a computational comparison. Such com-
parisons are necessarily problem-dependent and based largely on empirical evidence.
Although some general statements can be made, the lines between the various bounding
techniques presented here are blurry at best and many subtle variations are possible.
Our goal is to provide the reader with insight that may be useful in guiding the choice
of method. By illustrating the relationships between various techniques, we provide a
methodological framework within which it is easy to switch between variants by replac-
ing certain algorithmic components. We are currently developing a software framework
that provides just such a capability. A more detailed treatment of this material is also
provided in [56].

To simplify the exposition, we consider only pure integer linear programming prob-
lems (ILPs) with bounded feasible regions, although the framework can be extended
to more general settings. For the remainder of the paper, we consider an ILP whose
feasible set is the integer vectors contained in the polyhedron Q = {x ∈ R

n : Ax ≥ b},
where A ∈ Q

m×n is the constraint matrix and b ∈ Q
m is the right-hand-side vector. Let

F = Q ∩ Z
n be the feasible set and let P be the convex hull of F .

We consider two problems associated with the polyhedron P . The optimization prob-
lem for P is that of determining

zIP = min
x∈Zn

{
c�x | Ax ≥ b

}
= min

x∈P

{
c�x

}
= min

x∈F

{
c�x

}
(1)

for a given cost vector c ∈ Q
n, where zIP is set to infinity if F is empty. A related prob-

lem is the separation problem for P . Given x ∈ R
n, the problem of separating x from P

is that of deciding whether x ∈ P and if not, determining a ∈ R
n and β ∈ R such that

a�y ≥ β ∀y ∈ P but a�x < β. A pair (a, β) ∈ R
n+1 such that a�y ≥ β ∀y ∈ P is a

valid inequality for P and is said to be violated by x ∈ R
n if a�x < β. In [30], it was

shown that the separation problem for P is polynomially equivalent to the optimization
problem for P .

To apply the principle of decomposition, we consider the relaxation of (1) defined by

min
x∈Zn

{
c�x | A′x ≥ b′

}
,= min

x∈P ′
{
c�x

}
= min

x∈F ′
{
c�x

}
(2)

where F ⊂ F ′ = {x ∈ Z
n | A′x ≥ b′} for some A′ ∈ Q

m′×n, b′ ∈ Q
m′ and P ′

is the convex hull of F ′. As usual, we assume that there exists an effective algorithm
for optimizing over P ′. We are deliberately using the term effective here to denote an
algorithm that has an acceptable average-case running time, since this is the relevant
measure of running time for our purposes. Along with P ′ is associated a set of side
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constraints. Let [A′′, b′′] ∈ Q
m′′×n be a set of additional inequalities needed to describe

F , i.e., [A′′, b′′] is such that F = {x ∈ Z
n | A′x ≥ b′, A′′x ≥ b′′}. We denote by Q′ the

polyhedron described by the inequalities [A′, b′] and by Q′′ the polyhedron described by
the inequalities [A′′, b′′]. Hence, the initial LP relaxation is the linear program defined
by Q = Q′ ∩Q′′, and the LP bound is given by

zLP = min
x∈Rn

{
c�x | A′x ≥ b′, A′′x ≥ b′′

}
= min

x∈Q

{
c�x

}
. (3)

This is slightly more general than the traditional framework, in which [A′, b′] and
[A′′, b′′] are a partition of the rows of [A, b].

2. Traditional Decomposition Methods

The goal of the decomposition approach is to improve on the LP bound by taking advan-
tage of our ability to optimize over and/or separate from P ′. We briefly review the
classical bounding methods that take this approach in order to establish terminology and
notation.

Lagrangian Relaxation. For a given vector of dual multipliers u ∈ R
m′′+ , the Lagrang-

ian relaxation of (1) is given by

zLR(u) = min
s∈F ′

{(
c� − u�A′′

)
s + u�b′′

}
(4)

It is easily shown that zLR(u) is a lower bound on zIP for any u ≥ 0. The problem

zLD = max
u∈Rm′′+

{
zLR(u)

}
(5)

of maximizing this bound over all choices of dual multipliers is a dual to (1) called
the Lagrangian dual (LD) and also provides the lower bound zLD , which we call the
LD bound. A vector of multipliers that yield the largest bound are called optimal (dual)
multipliers. For the remainder of the paper, let û be such a vector.

The Lagrangian dual can be solved by any of a number of subgradient-based opti-
mization procedures or by rewriting it as the equivalent linear program

zLD = max
α∈R,u∈Rm′′+

{
α + u�b′′| α ≤

(
c� − u�A′′

)
s ∀s ∈ F ′

}
, (6)

and solving it using a cutting plane algorithm. In any case, the main computational effort
is in evaluating zLR(u) for a given sequence of dual multipliers u. This is an optimization
problem over P ′, which we assumed could be solved effectively. This general approach
is described in more detail in [32].

Dantzig-Wolfe Decomposition. The approach of Dantzig-Wolfe decomposition is to
reformulate (1) by implicitly requiring the solution to be a member of F ′, while explicitly
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enforcing the inequalities [A′′, b′′]. Relaxing the integrality constraints of this reformu-
lation, we obtain the linear program

zDW = min
λ∈RF ′+

{
c�
(∑

s∈F ′
sλs

) ∣∣∣∣ A′′
(∑

s∈F ′
sλs

)
≥ b′′,

∑
s∈F ′

λs = 1

}
, (7)

which we call the Dantzig-Wolfe LP (DWLP). Although the number of columns in
this linear program is |F ′|, it can be solved by dynamic column generation, where the
column-generation subproblem is again an optimization problem over P ′ equivalent to
that of evaluating zLR(u) for a vector u arising as the dual multipliers of the constraints
of (7).

It is easy to verify that the DWLP is the dual of (6), which immediately shows that
zDW = zLD (see [52] for a detailed treatment of this fact). Hence, zDW is a valid lower
bound on zIP that we call the DW bound. Note that if we let α̂ = zLR(û)− û�b′′, then
(û, α̂) is an optimal solution for the LP (6) and hence also an optimal dual solution to
the DWLP. An optimal primal solution to (7) is referred to as an optimal Dantzig-Wolfe
(DW) decomposition. For the remainder of the paper, let λ̂ be such a solution. If we
combine the members of F ′ using λ̂, to obtain

x̂DW =
∑
s∈F ′

sλ̂s, (8)

then we see that zDW = c�x̂DW . Since x̂DW must lie within P ′ ⊆ Q′ and also within
Q′′, this shows that zDW ≥ zLP . A general treatment of Dantzig-Wolfe decomposition
can be found in [45].

Cutting Plane Method. In the cutting plane method, inequalities describing P ′ (i.e.,
the facet-defining inequalities) are generated dynamically by separating the solutions to
a series of LP relaxations from P ′. In this way, the initial LP relaxation is iteratively
augmented to obtain the CP bound,

zCP = min
x∈Rn

{
c�x | A′′x ≥ b′′, Dx ≥ d

}
= min

x∈P ′∩Q′′
{
c�x

}
, (9)

where [D, d] are the facet-defining inequalities for P ′. We refer to this augmented linear
program as the cutting plane LP (CPLP) and any optimal solution to CPLP as an optimal
fractional solution. For the remainder of the paper, let x̂CP be such a solution. Note that
x̂DW , as defined in (8), is an optimal solution to this augmented linear program. Hence,
the CP bound is equal to both the DW bound and the LD bound. A general treatment of
the cutting plane method can be found in [50].

A Common Framework. The following well-known result of Geoffrion [26] relates the
three methods just described.

Theorem 1. zIP ≥ zLD = zDW = zCP ≥ zLP .

A graphical depiction of this common bound is shown in Figure 1. Theorem 1 shows
that (5), (7), and (9) represent three different formulations for the problem of computing
this bound. As such, the methods we have just described are really only distinguished
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Fig. 1. Illustration of the LP and LD/DW/CP bounds

by the solution algorithms typically applied in each case, as well as by the auxiliary
solution information each formulation yields. More is said about algorithms for solving
these bounding subproblem in Section 3.4. For now, we focus on developing a common
way of viewing these methods.

As we have seen, the basis for each of the methods is that we are given a polyhedron
P over which we would like to optimize, along with two additional polyhedra, denoted
here by Q′′ and P ′, each of which contain P . The polyhedron Q′′ typically has a small
description that can be represented explicitly, while the polyhedron P ′ has a much larger
description and is represented implicitly, i.e., portions of the description are generated
dynamically using our ability to effectively optimize/separate. To describe their roles in
this framework, we call P the original polyhedron, Q′′ the explicit polyhedron, and P ′
the implicit polyhedron. Note that, although traditional decomposition methods insist
that Q′′ have a small description, the methods described in Section 3 allow portions of
an outer description of Q′′ to also be generated dynamically. In Section 4, we describe
some applications in which this is the case.

By the Weyl-Minkowski Theorem, every bounded rational polyhedron has two
descriptions—one as the intersection of half-spaces (the outer representation) and one
as the convex hull of its extreme points (the inner representation) [51]. The concep-
tual difference between the formulations utilized by the three methods just reviewed
is that Dantzig-Wolfe decomposition and Lagrangian relaxation utilize an inner rep-
resentation of P ′, generated dynamically by solving the corresponding optimization
problem, whereas the cutting plane method relies on an outer representation of P ′, gen-
erated dynamically by solving the separation problem for P ′. For this reason, we call
Dantzig-Wolfe decomposition and Lagrangian relaxation inner methods, and the cutting
plane method an outer method. In theory, we have the same choice of representation for
the explicit polyhedron—it is intriguing to ponder the implications of this choice. Note
that this framework encompasses methods not normally thought of as decomposition
methods. In particular, by defining the implicit polyhedron to be a polyhedron defined by
classes of inequalities for which there are effective separation algorithms, we can view
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cutting plane methods as just another type of decomposition method. This viewpoint
sheds new light on their relationship to traditional decomposition methods.

3. Integrated Decomposition Methods

One of the apparent advantages of outer methods over inner methods is the option of
adding heuristically generated inequalities valid for P to the cutting plane LP to improve
the bound discussed in Section 2. Such inequalities may “cut off” portions of P ′ to yield
a better outer approximation of P . This dynamic generation of additional valid inequal-
ities in outer methods can be thought of as a dynamic tightening of either the explicit or
the implicit polyhedron. Such a tightening procedure can also be incorporated into inner
methods in a straightforward way. Viewing these inequalities as dynamically tightening
the explicit polyhedron yields a generalization of the cutting plane method obtained by
replacing the cutting plane LP with either a Dantzig-Wolfe LP or a Lagrangian dual as
the bounding subproblem. We call this class of bounding procedures integrated decom-
position methods because they integrate inner and outer methods. The steps of this
generalized method are shown in Figure 2.

The important step in Figure 2 is Step 2, generating a set of improving inequalities,
i.e., inequalities valid for P that when added to the description of the explicit polyhedron
result in an increase in the computed bound. Putting aside the question of exactly how
Step 2 is to be accomplished, the approach is straightforward. Step 1 is performed as
in a traditional decomposition framework. Step 3 is accomplished by simply adding the
newly generated inequalities to the list [A′′, b′′] and reforming the appropriate bounding
subproblem. Note that it is also possible to develop an analog based on an interpretation
of the cutting plane method as a dynamic tightening of the implicit polyhedron [62]. In
this case, the implicit polyhedron associated with the subproblem to be solved in Step 1
may also change dynamically. We have not yet investigated this class of methods.

Although some forms of this general method have appeared in the literature, they
have received little attention thus far and naming conventions are not well-established.
We would like to suggest here a naming convention that emphasizes the close relation-
ship of these methods to each other. When the bounding subproblem is a Dantzig-Wolfe

An Integrated Decomposition Method
Input: An instance of ILP.
Output: A lower bound on the optimal solution value for the instance.

1. Solve the bounding subproblem, which is one of
zCP = minx∈P ′ {c�x | A′′x ≥ b′′},
zLD = max

u∈Rm′′+
mins∈F ′ {(c� − u�A′′)s + u�b′′}, or

zDW = min
λ∈RF ′+

{c�(
∑

s∈F ′ sλs) | A′′(
∑

s∈F ′ sλs) ≥ b′′,
∑

s∈F ′ λs = 1},
to obtain a valid lower bound z.

2. Attempt to generate a set of improving inequalities [D̂, d̂] valid for P .
3. If valid inequalities were found in Step 2, form a new bounding subproblem by setting [A′′, b′′]←[

A′′ b′′
D̂ d̂

]
. Then, go to Step 1.

4. If no valid inequalities were found in Step 2, then output z.

Fig. 2. Basic outline of an integrated decomposition method
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LP, we call the resulting method price and cut. When employed in a branch and bound
framework, the overall technique is called branch, price, and cut. This method has been
studied by a number of authors [11, 12, 35, 60, 61] and is described in more detail in
Section 3.1. When the bounding subproblem is a Lagrangian dual, we call the method
relax and cut. When relax and cut is used as the bounding procedure in a branch and
bound framework, we call the overall method branch, relax, and cut. Variants of this
method have also been studied previously by several authors (see [42] for a survey) and
is described in more detail in Section 3.2. Finally, in Section 3.3, we describe a variant of
the cutting plane method that employs a decomposition-based separation procedure. We
call this method decompose and cut and embed it within a branch and bound framework
to obtain the method branch, decompose, and cut.

As we alluded to earlier, the distinction between what we call price and cut and what
we call relax and cut may not be that easy to make, since modern methods for solving the
subproblems in each case can be quite similar. The rough distinction we make between
them here, however, is in the amount of primal solution information produced as a by-
product of the solution process. When solving a Dantzig-Wolfe LP, we assume that an
optimal DW decomposition is produced exactly. When solving a Lagrangian dual, we
assume only approximate primal solution information, if any at all, is available. Solution
methods for these subproblems are discussed in more detail in Section 3.4.

As we have already mentioned, Step 2 is the crux of integrated decomposition meth-
ods. In the context of the cutting plane method, this step is usually accomplished by
applying one of the many known techniques for separating x̂CP from P (see [1]). Viola-
tion of x̂CP is a necessary condition for an inequality to be improving, and hence such
an inequality is likely to be effective. However, unless the inequality separates the entire
optimal face F to the cutting plane LP, it will not be improving. Because we want to
refer to these well-known results later in the paper, we state them formally as theorem
and corollary without proof. See [59] for a thorough treatment of the theory of linear
programming that leads to this result.

Theorem 2. Let F be the face of optimal solutions to an LP solved directly over P ′ ∩Q′′
with objective function c. Then (a, β) ∈ R

n+1 is an improving inequality if and only if
a�x < β for all x ∈ F .

Corollary 1. If (a, β) ∈ R
n+1 is an improving inequality, then a�x̂CP < β.

Fortunately, even in the case when F is not separated in its entirety, the augmented
cutting plane LP must have a different optimal solution, which in turn may be used to
generate more potential improving inequalities. Since the condition of Theorem 2 is diffi-
cult to verify, one typically terminates the bounding procedure when increases resulting
from additional inequalities become “too small.” In the next two sections, we examine
how improving inequalities can be generated when the bounding subproblem is either a
Dantzig-Wolfe LP or a Lagrangian dual. We then return to the cutting plane method to
discuss how decomposition can be used directly to aid in solving the separation problem.

3.1. Price and Cut

Finding Improving Inequalities. Using the Dantzig-Wolfe LP as the bounding subprob-
lem in Figure 2 results in a procedure that alternates between generating columns and
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generating valid inequalities. Such concurrent generation of columns and valid inequal-
ities is difficult in general because the addition of valid inequalities can destroy the
structure of the column-generation subproblem (for a discussion of this, see [60]). Hav-
ing solved the Dantzig-Wolfe LP, however, one can easily recover an optimal solution to
the cutting plane LP using (8) and try to generate improving inequalities as in the cutting
plane method. The generation of valid inequalities thus takes place in the original space
and does not destroy the structure of the column-generation subproblem in the Dant-
zig-Wolfe LP. This approach enables dynamic generation of valid inequalities, while
still retaining the bound improvement and other advantages yielded by Dantzig-Wolfe
decomposition. A recent paper by Arãgao and Uchoa discusses this technique in more
detail [21].

Because the same valid inequalities are generated with this method as would be
generated in the cutting plane method, these two dynamic methods achieve the same
bound in principle. Price and cut, however, produces additional primal information that
we may be able to use to our advantage. In particular, the optimal DW decomposition
λ̂ provides a decomposition of x̂DW into a convex combination of members of F ′. We
refer to elements of F ′ that have a positive weight in this combination as members of the
decomposition. The following theorem shows how such a decomposition can be used to
derive an alternate necessary condition for an inequality to be improving.

Theorem 3. If x ∈ R
n violates the inequality (a, β) ∈ R

(n+1) and λ ∈ R
F ′+ is such that∑

s∈F ′ λs = 1 and x = ∑s∈F ′ sλs , then there must exist an s ∈ F ′ with λs > 0 such
that s also violates the inequality (a, β) .

Proof. Let x ∈ R
n and (a, β) ∈ R

(n+1) be given such that a�x < β. Also, let λ ∈ R
F ′+

be given such that
∑

s∈F ′ λs = 1 and x = ∑
s∈F ′ sλs . Suppose that a�s ≥ β for

all s ∈ F ′ with λs > 0. Since
∑

s∈F ′ λs = 1, we have a�(
∑

s∈F ′ sλs) ≥ β. Hence,
a�x = a�(

∑
s∈F ′ sλs) ≥ β, which is a contradiction. ��

In other words, an inequality can be improving only if it is violated by at least one mem-
ber of the decomposition. If I is the set of all improving inequalities, then the following
corollary is a direct consequence of Theorem 3.

Corollary 2. I ⊆ V = {(a, β) ∈ R
(n+1) | a�s < β for some s ∈ F ′ such that λ̂s > 0}.

The importance of this result is that in many cases, it is easier to separate members of F ′
from P than to separate arbitrary real vectors. We call this approach structured separa-
tion. There are a number of well-known polyhedra for which the problem of separating an
arbitrary real vector is difficult, but the problem of separating a solution to a given relax-
ation is easy. Some examples are discussed in Section 4. In Figure 3, we propose a new
separation procedure to be embedded in price and cut that takes advantage of this fact.

The running time of the procedure in Figure 3 depends in part on the cardinality of
the decomposition. Carathéodory’s Theorem assures us that there exists a decomposi-
tion with less than or equal to dim(P ′) + 1 members. Unfortunately, even if we limit
our search to a particular known class of inequalities, the number of such inequalities
violated by each member of D in Step 2 may be extremely large and these inequali-
ties may not be violated by x̂DW (such an inequality cannot be improving). Unless we
enumerate every inequality in the set V from Corollary 2, either implicitly or explicitly,
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Separation using a Dantzig-Wolfe Decomposition
Input: A DW decomposition λ̂.
Output: A set of potentially improving inequalities for P .

1. Form the set D = {s ∈ F ′ : λ̂s > 0}.
2. For each s ∈ D, attempt to separate s from P to obtain a set [Ds, ds ] of violated inequalities.
3. Let [Dx, dx ] be composed of the inequalities found in Step 2 that are also violated by x̂DW .
4. Return [Dx, dx ] as the set of potentially improving inequalities.

Fig. 3. Separation using a Dantzig-Wolfe decomposition

the procedure does not guarantee that an improving inequality will be found, even if
one exists. In cases where it is possible to examine the set V in polynomial time, the
worst-case complexity of the entire procedure is the same as that of optimizing over
P ′. Obviously, it is thus unlikely that the set V can be examined in polynomial time in
situations in which the separation problem for the class in question is NP-complete. In
such cases, the procedure to select inequalities that are likely to be violated by x̂DW in
Step 2 is necessarily a problem-dependent heuristic. The effectiveness of this heuristic
can be improved in a number of ways, some of which are discussed in [57]. Further
details will be provided in a companion paper on the computational aspects of these
methods.

Connections to Other Methods. By making connections to the cutting plane method,
we can gain further insight. Consider the set

S =
{
s ∈ F ′ |

(
c� − û�A′′

)
s = α̂

}
, (10)

where α̂ is again defined to be zLR(û)− û�b′′, so that (û, α̂) is an optimal dual solution
to the DWLP. Since S is comprised exactly of those members of F ′ corresponding
to columns of the Dantzig-Wolfe LP with reduced cost zero, complementary slackness
guarantees that the set S must contain all members of the decomposition. The following
theorem follows directly from this observation.

Theorem 4. conv(S) is a face of P ′ and contains x̂DW .

Proof. We first show that conv(S) is a face of P ′. First, note that
(
c� − û�A′′, α̂

)

defines a valid inequality for P ′, since α̂ was defined to be zLR(û)− û�b′′, which is the
optimal value of a solution to the problem of minimizing over P ′ with objective function
c� − û�A′′. Thus, the set

G =
{
x ∈ P ′ |

(
c� − û�A′′

)
x = α̂

}
, (11)

is a face of P ′ that contains S. We claim that conv(S) = G. Since G is convex and
contains S, it also contains conv(S), so we just need to show that conv(S) contains G.
We do so by showing that the extreme points of G are members of S. By construction, all
extreme points of P ′ are members of F ′. Furthermore, the extreme points of G are also
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extreme points of P ′ and therefore must be members of F ′. It follows that the extreme
points of G must be members of S. Hence, conv(S) = G and conv(S) is a face of P ′.

The fact that x̂DW ∈ conv(S) follows from the fact that x̂DW is a convex combination
of members of S. ��
An important consequence of this result is contained in the following corollary.

Corollary 3. If F is the face of optimal solutions to an LP solved over P ′ ∩ Q′′ with
objective function c, then F ⊆ conv(S) ∩Q′′.
Proof. Let x ∈ F be given. Then x ∈ P ′ ∩Q′′ by definition and also

c�x = zCP = zLD = α̂ + û�b′′ = α̂ + û�A′′x, (12)

where the last equality in this chain is a consequence of complementary slackness. It
follows that (c� − û�A′′)x = α̂ and thus x ∈ G = conv(S) from the proof of Theorem
4 above. ��
Hence, the convex hull of the decomposition is a subset of conv(S) that contains x̂DW

and can be thought of as a surrogate for the face of optimal solutions to the cutting plane
LP. Combining this corollary with Theorem 2, we conclude that separation of S from
P is a sufficient condition for an inequality to be improving. Although this sufficient
condition is difficult to verify in practice, it does provide additional motivation for the
method described in Figure 3.

The convex hull of S is typically a proper face of P ′. It is possible, however, for x̂DW

to be an inner point of P ′.
Theorem 5. If x̂DW is an inner point of P ′, then conv(S) = P ′.
Proof. We prove the contrapositive. Suppose conv(S) is a proper face of P ′. Then
there exists a facet-defining valid inequality (a, β) ∈ R

n+1 such that conv(S) ⊆ {x ∈
R

n | ax = β}. By Theorem 4, x̂DW ∈ conv(S) and x̂DW therefore cannot satisfy the
definition of an inner point. ��
In this case, illustrated graphically in Figure 4(a), zDW = zLP and Dantzig-Wolfe decom-
position does not improve the bound.All columns of the Dantzig-Wolfe LP have reduced
cost zero and any member of F ′ can be made a member of the decomposition. A nec-
essary condition for an optimal fractional solution to be an inner point of P ′ is that the
value of the dual variable corresponding to the convexity constraint (i.e., α in (6)) in an
optimal dual solution to the Dantzig-Wolfe LP be zero. This condition indicates that the
chosen relaxation may be too weak.

As we discuss further in Section 3.2, the penalty term in the objective function of the
Lagrangian subproblem (4) perturbs the original objective function so that the face of P ′
it induces is conv(S). A second case of potential interest is when the face F of Corollary
3 is equal to conv(S) ∩ Q′′, illustrated graphically in Figure 4(b). This occurs when
the face of P ′ induced by the original objective function vector c is equal to conv(S)

and hence the penalty term is zero. This condition can be detected by examining the
objective function values of the members of the decomposition. If they are all identical,
any member of the decomposition that is contained in Q′′ (if one exists) must be optimal
for the original ILP, since it is feasible and has objective function value equal to zLP .
In this case, all constraints of the Dantzig-Wolfe LP other than the convexity constraint
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Fig. 4. The relationship of P ′ ∩Q′′, conv(S), and the face F , for different cost vectors

must have dual value zero, since removing them does not change the optimal solution
value. The more typical case, in which F is a proper subset of conv(S) ∩ Q′′ and the
penalty term is nonzero, is shown in Figure 4(c).

3.2. Relax and Cut

Finding Improving Inequalities. When the bounding subproblem is the Lagrangian
dual, it is more difficult to obtain the primal solution information readily available to
us in both the cutting plane method and price and cut. The amount of primal solution
information depends on the algorithm used to solve the Lagrangian dual. With methods
such as the volume algorithm [9], it is possible to obtain an approximate primal solution.
For the sake of discussion, however, we assume in what follows that no primal solution
information is available. In such a case, we can attempt to separate ŝ = argmin zLR(û)

from P , where û is the vector of optimal dual multipliers defined earlier. Since ŝ is a
member of F ′, we are again taking advantage of our ability to separate members of
F ′ from P effectively. If successful, we immediately “dualize” this new constraint by
adding it to [A′′, b′′], as described in Section 3. This has the effect of introducing a new
dual multiplier and slightly perturbing the Lagrangian objective function.

As with both the cutting plane and price and cut methods, the difficulty with relax and
cut is that the valid inequalities generated by separating ŝ from P may not be improving,
as Guignard first observed in [31]. Furthermore, we cannot verify the condition of Corol-
lary 1, which is the best available necessary condition for an inequality to be improving.
To deepen our understanding of the potential effectiveness of the valid inequalities gen-
erated during relax and cut, we further examine the relationship between ŝ and x̂DW .

Connections to Other Methods. By considering again the reformulation of the Lagrang-
ian dual as the linear program (6), we observe that each constraint binding at an optimal
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solution corresponds to an alternative optimal solution to the Lagrangian subproblem
with multipliers û. The binding constraints of (6) correspond to variables with reduced
cost zero in the Dantzig-Wolfe LP (7), so it follows immediately that the set S from (10)
is also the set of all alternative optimal solutions to zLR(û).

Because x̂DW is both an optimal solution to an LP solved over P ′ ∩Q′′ with objective
function c and is contained in conv(S), it also follows that

c�x̂DW = c�x̂DW + û�(b′′ − A′′x̂DW ) = (c� − û�A′′)x̂DW + û�b′′.

In other words, the penalty term in the objective function of the Lagrangian subprob-
lem (4) serves to rotate the original objective function so that it becomes parallel to the
face conv(S), while the constant term û�b′′ ensures that x̂DW has the same cost with
both the original and the Lagrangian objective function. This is illustrated in Figure 4(c).

One conclusion that can be drawn from these observations is that solving the Dantzig-
Wolfe LP produces a set of alternative optimal solutions to the Lagrangian subproblem
with multipliers û, at least one of which must be violated by a given improving inequality.
This yields a verifiable necessary condition for a generated inequality to be improving.
Relax and cut, in its most straightforward incarnation, produces one member of this set.
In this case, even if improving inequalities exist, it is possible that none of them are
violated by the member of S so produced, especially if it has a small weight in the opti-
mal DW decomposition λ̂. Note, however, that by keeping track of the solutions to the
Lagrangian subproblem that are produced while solving the Lagrangian dual, one can
approximate the optimal DW decomposition. This is the approach taken by the volume
algorithm [9] and other subgradient-based methods. As in price and cut, when x̂DW is
an inner point of P ′, the decomposition does not improve the bound and all members
of F ′ are alternative optimal solutions to the Lagrangian subproblem. This situation is
depicted in Figure 4(a). In this case, separating an optimal solution to zLR(û) from P is
unlikely to yield an improving inequality.

3.3. Decompose and Cut

The use of an optimal DW decomposition to aid in separation is easy to extend to a
traditional branch and cut framework using a technique we call decompose and cut,
originally proposed in [55] and further developed in [36] and [57]. Consider the optimal
fractional solution x̂CP obtained directly by solving the cutting plane LP and suppose
that given s ∈ F ′, we can determine effectively whether s ∈ F and if not, generate
a valid inequality (a, β) violated by s. By first decomposing x̂CP (i.e., expressing x̂CP

as a convex combination of members of F ′) and then separating each member of this
decomposition from P in a fashion analogous to that described in Figure 3, we may be
able to separate x̂CP from the polyhedron P .

The difficult step is finding the decomposition of x̂CP . This can be accomplished
by solving a linear program whose columns are the members of F ′, as described in
Figure 5. This linear program is reminiscent of a Dantzig-Wolfe LP and in fact can be
solved using an analogous column-generation scheme, as described in Figure 6. This
scheme can be seen as inverting the method described in Section 3.1, since it begins with
the fractional solution x̂CP and tries to compute a decomposition, instead of the other
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Separation in Decompose and Cut
Input: x̂ ∈ R

n

Output: A valid inequality for P violated by x̂, if one is found.

1. Apply standard separation techniques to separate x̂. If one of these returns a violated inequality,
then STOP and output the violated inequality.

2. Otherwise, solve the linear program

max
λ∈RF ′+

{0�λ :
∑
s∈F ′

sλs = x̂,
∑
s∈F ′

λs = 1}, (13)

as in Figure 6.
3. The result of Step 2 is either (1) a valid inequality (a, β) for P that is violated by x̂, or (2) a subset

D of members of F ′ participating in a convex combination of x̂. In the first case, go to Step 4. In
the second case, STOP and output the violated inequality.

4. Attempt to separate each member of D from P . For each inequality violated by a member of D,
check whether it is also violated by x̂. If an inequality violated by x̂ is encountered, STOP and
output it.

Fig. 5. Separation in the decompose and cut method

Column Generation in Decompose and Cut
Input: x̂ ∈ R

n

Output: Either (1) a valid inequality for P violated by x̂; or (2) a subset D of members of F ′ participating
in a convex combination of x̂.

2.0 Generate an initial subset G of F ′.
2.1 Solve (13), replacing F ′ by G. If this linear program is feasible, then the elements of F ′ corre-

sponding to the nonzero components of λ̂, the current solution, comprise the set D, so STOP.
2.2 Otherwise, let (a, β) be a valid inequality for conv(G) violated by x̂. Solve the optimization prob-

lem over P ′ with cost vector a and let s be the resulting solution. If the optimal value is less than
β, then add s to G and go to 2.1. Otherwise, (a, β) is an inequality valid for P ′ ⊇ P and violated
by x̂, so STOP.

Fig. 6. Column generation for the decompose and cut method

way around. By the equivalence of optimization and separation, we conclude that the
worst-case complexity of finding a decomposition of x̂CP is polynomially equivalent to
that of optimizing over P ′.

Once the decomposition is found, it can be used as in price and cut to locate a violated
inequality by the methodology discussed earlier. This procedure is shown in Figure 5.
In contrast to price and cut, however, it is possible that x̂CP �∈ P ′. This could occur, for
instance, if exact separation methods for P ′ are too expensive to apply consistently. In
this case, it is obviously not possible to find a decomposition in Step 2. The proof of
infeasibility for the linear program (13), however, provides an inequality separating x̂CP

from P ′ at no additional expense. Hence, even if we fail to find a decomposition, we still
find an inequality valid for P and violated by x̂CP . This idea was originally suggested
in [55] and was further developed in [36]. A similar concept was also discovered and
developed independently by Applegate et al. [3].

Applying decompose and cut in every iteration as the sole means of separation is
polynomially equivalent to price and cut. In practice, however, the decomposition is only
computed when needed, i.e., when less expensive separation heuristics fail to separate
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the optimal fractional solution. This could give decompose and cut an edge in terms of
computational efficiency. In other respects, the computations performed in each method
are similar.

3.4. Implementation and Extensions

In practice, there are many variations on the general theme described here. The details
surrounding implementation of these methods will be covered in a separate paper, but
we would like to give the reader a taste for the issues involved and for the existing meth-
odology. An important aspect of the implementation of these methods is the algorithm
used for solving the subproblem in Step 1 of the algorithm in Figure 2. Three general
categories of methods for solving such subproblems are simplex methods, interior point
methods, and subgradient methods. Simplex methods provide accurate primal solution
information, but updates to the dual solution each iteration are relatively expensive. In
their most straightforward form, they also tend to converge slowly when used to solve a
Dantzig-Wolfe LP by column generation because of the fact that they produce basic dual
solutions, which can change substantially from one iteration to the next. This problem
can be addressed by implementing one of a number of stabilization methods that prevent
the dual solution from changing “too much” from one iteration to the next (for a survey,
see [39]). In their most straightforward form, subgradient methods do not produce pri-
mal solution information. However, it is possible to extract approximate primal solutions
from variants of subgradient such as the volume algorithm [9]. Subgradient methods also
have convergence issues without some form of stabilization. A recent class of algorithms
that has proven effective in this regard is bundle methods [18]. Interior point methods
may provide a middle ground by providing accurate primal solution information and
more stable dual solutions [58, 28]. In addition, hybrid methods that alternate between
simplex and subgradient methods for updating the dual solution have also shown promise
[10, 33].

An even more general framework containing the methods described here can be
obtained by viewing them as alternating between a master problem that updates solu-
tion information and a procedure for using that solution information to generate an
improved approximation of P by solving either a pricing or a cutting subproblem. In
this generalized framework, we do not insist on solving the subproblem in Step 1 of the
algorithm in Figure 2 to optimality before generating cuts, but rather allow the method to
alternate freely between the pricing and cutting subproblems [17, 29, 42]. The software
framework we are developing will allow essentially any sequence of solution updates,
pricing, and cutting by any of the methods discussed here. This leads to a wide range
of possibilities, very few of which have been investigated in the literature so far. For a
treatment of this more general viewpoint, see [56].

4. Applications

In this section, we illustrate the concepts presented so far with three examples. For each
example, we discuss the key elements needed to apply the framework: (1) the original
ILP formulation, (2) the explicit and implicit polyhedra, and (3) known classes of valid
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inequalities that can be used to dynamically tighten the explicit polyhedron by using
structured separation techniques. The well-known template paradigm for separation, so
named by Applegate et al. [3], is the standard approach for generating violated valid
inequalities when solving MILPs. This paradigm operates on the precept that it is some-
times possible to effectively solve the separation problem for a given class of inequalities
valid for the polyhedron P , though the general separation problem for P is difficult. Our
framework extends this paradigm by considering classes of valid inequalities for which
the separation of an arbitrary real vector is difficult but for which separation of solutions
to a specified relaxation can be accomplished effectively. In addition to the three exam-
ples presented here, there are a number of common ILPs with classes of valid inequalities
and relaxations that fit into this framework, such as the GeneralizedAssignment Problem
[53], the Edge-Weighted Clique Problem [34], the Traveling Salesman Problem [5], the
Knapsack Constrained Circuit Problem [38], the Rectangular Partition Problem [16], the
Linear Ordering Problem [15], and the Capacitated Minimum Spanning Tree Problem
[24].

4.1. Vehicle Routing Problem

We first consider the Vehicle Routing Problem (VRP) introduced by Dantzig and Ramser
[20]. In this NP-hard optimization problem, a fleet of k vehicles with uniform capacity
C must service known customer demands for a single commodity from a common depot
at minimum cost. Let V = {1, . . . , |V |} index the set of customers and let the depot have
index 0. Associated with each customer i ∈ V is a demand di . The cost of travel from
location i to location j is denoted by cij for i, j ∈ V ∪{0}. We assume that cij = cji > 0
if i �= j and cii = 0.

By constructing an associated complete undirected graph G with vertex set N =
V ∪ {0} and edge set E = N × N , we can formulate the VRP as an integer pro-
gram. A route is an ordered subset R = (i1, i2, . . . , im) of V with associated edge set
ER = {{ij , ij+1} : j ∈ 0, . . . , m}, where i0 = im+1 = 0. A feasible solution is then any
subset of E that is the union of the edge sets of k disjoint routes Ri, i ∈ [1..k], each sat-
isfying the capacity restriction, i.e.,

∑
j∈Ri

dj ≤ C ∀i ∈ [1..k]. Each route corresponds
to a set of customers serviced by one of the k vehicles. To simplify the presentation, we
define some additional notation. Let δ(S) = {{i, j} ∈ E | i ∈ S, j /∈ S}, E(S : T ) =
{{i, j} | i ∈ S, j ∈ T }, E(S) = E(S : S) and x(F ) =∑e∈F xe.

By associating a variable with each edge in the graph, we obtain the following for-
mulation of this ILP [37]:

min
∑
e∈E

cexe

x(δ({0})) = 2k (14)

x(δ({v})) = 2 ∀v ∈ V, (15)

x(δ(S)) ≥ 2b(S) ∀S ⊆ V, |S| > 1, (16)

xe ∈ {0, 1} ∀e ∈ E(V ), (17)

xe ∈ {0, 1, 2} ∀e ∈ δ(0). (18)
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Here, b(S) represents a lower bound on the number of vehicles required to service the set
of customers S. Inequalities (14) ensure that there are exactly k vehicles, each departing
from and returning to the depot, while inequalities (15) require that each customer must
be serviced by exactly one vehicle. Inequalities (16), known as the generalized subtour
elimination constraints (GSECs) can be viewed as a generalization of the subtour elimi-
nation constraints from the Traveling Salesman Problem (TSP) and enforce connectivity
of the solution, as well as ensuring that no route has total demand exceeding capacity C.
For ease of computation, we can define b(S) = ⌈(∑i∈S di

)
/C
⌉

, a trivial lower bound
on the number of vehicles required to service the set of customers S.

Returning to our earlier notation and setup, the set of feasible solutions to the VRP
is

F =
{
x ∈ R

E | x satisfies (14)− (18)
}
,

and P = conv(F) is then the VRP polytope. Many classes of valid inequalities for the
VRP polytope have been reported in the literature (see [49] for a survey). Significant
effort has been devoted to developing efficient algorithms for separating an arbitrary
fractional point using these classes of inequalities (see [43] for recent results).

For dynamic tightening of the explicit polyhedron, we concentrate here on the sep-
aration of GSECs. The separation problem for GSECs is NP-complete (see [4]), even
when b(S) is taken to be

⌈(∑
i∈S di

)
/C
⌉

, as above. In [43], Lysgaard et al. review stan-
dard heuristic procedures for separating arbitrary fractional solutions from the GSEC
polyhedron (the polyhedron described by all GSECs). Although GSECs are part of the
formulation presented above, there are exponentially many of them, so they must either
be generated dynamically or included as part of the description of the implicit polyhe-
dron. We discuss three alternatives for the implicit polyhedron: the Perfect b-Matching
polytope, the Degree-constrained k-Tree polytope, and the Multiple Traveling Sales-
man polytope. For each of these alternatives, solutions to the relaxation can be easily
separated from the GSEC polyhedron.

Perfect b-Matching Problem. With respect to the graph G, the Perfect b-Matching
Problem is to find a minimum weight subgraph of G such that x(δ(v)) = bv ∀v ∈ V for
some b ∈ Z

N+ . By dropping the GSECs from the VRP formulation, we obtain an instance
of the Perfect b-Matching Problem with associated implicit polyhedron P ′ = conv(F ′),
where

F ′ =
{
x ∈ R

E | x satisfies (14), (15), (17), (18)
}
.

In [48], Müller-Hannemann and Schwartz present several efficient polynomial algo-
rithms for solving the Perfect b-Matching Problem. Note that in this case, the explicit
polyhedron needed to completely describe the VRP polyhedron includes the GSECs
(16). In practice, however, we start with the explicit polyhedron Q′′ comprised of a
small set of GSECs and generate the others dynamically, as described earlier.

In [47], Miller uses the b-matching relaxation to solve the VRP by branch, relax,
and cut. He suggests separating members of F ′ from the GSEC polytope as follows.
Consider a member s of F ′ and its support graph Gs (a b-matching). If Gs is discon-
nected, then each component immediately induces a violated GSEC. On the other hand,
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if Gs is connected, we first remove the edges incident with the depot vertex and find the
connected components, which comprise the routes described earlier. To identify a vio-
lated GSEC, we compute the total demand of each route, checking whether it exceeds
capacity. If not, the solution is feasible for the original ILP and does not violate any
GSECs. If so, the set S of customers on any route whose total demand exceeds capacity
induces a violated GSEC. This separation routine runs in O(|V |) time and can be used
in any of the integrated decomposition methods previously described. Figure 7 gives an
optimal fractional solution (a) to an LP relaxation of the VRP expressed as a convex
combination of two b-matchings (b) and (c). In this example, the capacity C = 35 and
by inspection we find a violated GSEC in the second b-matching (c) with S equal to the
indicated component. This inequality is also violated by the optimal fractional solution,
since x̂(δ(S)) = 3.0 < 4.0 = 2b(S).

Minimum Degree-constrained k-Tree Problem. A k-tree is defined as a spanning sub-
graph of G that has |V |+k edges (recall that G has |V |+1 vertices).A degree-constrained
k-tree (k-DCT), as defined by Fisher in [23], is a k-tree with degree 2k at node 0. The
Minimum k-DCT Problem is that of finding a minimum cost k-DCT, where the cost of a
k-DCT is the sum of the costs on the edges present in the k-DCT. Fisher [23] introduced
this relaxation of the VRP as part of a Lagrangian relaxation-based algorithm for solving
the VRP.

The k-DCT polyhedron is obtained by first adding the redundant constraint

x(E) = |V | + k, (19)

which holds for any x ∈ P , then deleting the degree constraints (15), and relaxing the
capacity to C = ∑

i∈S di . Relaxing the capacity gives b(S) = 1 for all S ⊆ V , and
effectively replaces (16) with

∑
e∈δ(S)

xe ≥ 2,∀S ⊆ V, |S| > 1. (20)

The implicit polyhedron is then defined to be P ′ = conv(F ′), where

F ′ =
{
x ∈ R

E | x satisfies (14), (17), (19), (20)
}
.

The explicit polyhedron is then initially described by the constraints (15). In [63], Wei
and Yu give an algorithm for solving the Minimum k-DCT Problem with running time
O(|V |2 log |V |). In [46], Martinhon et al. study the use of the k-DCT relaxation for the
VRP in the context of branch, relax and cut. Again, consider separating a member s of F ′
from the polyhedron defined by all GSECs. It is easy to see that for GSECs, an algorithm
identical to that described above can be applied. Figure 7 gives the optimal fractional
solution (a) expressed as a convex combination of four k-DCTs (d)–(g). Removing the
depot edges, and checking each component’s demand, we easily identify the violated
GSEC indicated in (g).
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Fig. 7. Example of a decomposition into b-Matchings and k-DCTs

Multiple Traveling Salesman Problem. The Multiple Traveling Salesman Problem (k-
TSP) is an uncapacitated version of the VRP obtained by adding the degree constraints
to the k-DCT polyhedron. The implicit polyhedron is then defined as P ′ = conv(F ′),
where

F ′ =
{
x ∈ R

E | x satisfies (14), (15), (17), (18), (20)
}
.
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Although the k-TSP is an NP-hard optimization problem, small instances can be solved
effectively by transformation into an equivalent TSP obtained by adjoining to the graph
k − 1 additional copies of vertex 0 and its incident edges. In this case, we again start
with the explicit polyhedron comprised of a small set of GSECs and generate the others
dynamically. In [57], Ralphs et al. report on an implementation of branch, decompose
and cut using the k-TSP as a relaxation.

4.2. Three-Index Assignment Problem

The Three-Index Assignment Problem (3AP) is that of finding a minimum-weight parti-
tion of the vertices of a complete tri-partite graph Kn,n,n into cliques of size three. Let I, J
and K be the three vertex sets defining the tri-partite graph, with |I | = |J | = |K| = n,
and let H = I × J ×K be the set of all cliques of size three. By associating a variable
with each member of H , 3AP can be formulated as the following binary integer program:

min
∑

(i,j,k)∈H
cijkxijk

∑
(j,k)∈J×K

xijk = 1 ∀i ∈ I (21)

∑
(i,k)∈I×K

xijk = 1 ∀j ∈ J (22)

∑
(i,j)∈I×J

xijk = 1 ∀k ∈ K (23)

xijk ∈ {0, 1} ∀(i, j, k) ∈ H (24)

A number of applications of 3AP, which is known to be NP-hard [25], can be found in
the literature (see Piersjalla [18,19]). The set of feasible solutions to 3AP is

F =
{
x ∈ R

H | x satisfies (21)− (24)
}

and P = conv(F) is then the 3AP polytope.
In [7], Balas and Saltzman study the polyhedral structure of the 3AP polytope and

introduce several classes of facet-inducing inequalities. Let u, v ∈ H and define |u∩ v|
to be the number of coordinates for which the vectors u and v have the same value. Let
C(u) = {w ∈ H | |u ∩ w| = 2} and C(u, v) = {w ∈ H | |u ∩ w| = 1, |w ∩ v| = 2}.
We consider two classes of facet-inducing inequalities for P . For u ∈ H and any x ∈ P ,
we have

xu +
∑

w∈C(u)

xw ≤ 1, (25)

yielding a class of inequalities whose members are referred to by the label Q1(u), as in
[7]. Similarly, for u, v ∈ H with |u ∩ v = 0| and any x ∈ P , we have

xu +
∑

w∈C(u,v)

xw ≤ 1, (26)
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yielding a class of inequalities whose members are referred to by the label P1(u, v), also
as in [7]. In [6], Balas and Qi describe algorithms that solve the separation problem for
the polyhedra defined by the inequalities in these two classes in O(n3) time.

Balas and Saltzman consider the use of the classical Assignment Problem (AP) as
a relaxation of 3AP in an early implementation of branch, relax, and cut [8]. Following
their lead, we define the implicit polyhedron to be P ′ = conv(F ′), where

F ′ =
{
x ∈ R

H | x satisfies (22)− (24)
}
.

The explicit polyhedron is then initially described by the constraints (21). The AP can be
solved in O(n5/2 log(nC)) time, where C = maxw∈H cw, by the cost-scaling algorithm
[2]. Consider separating a member s of F ′ from the polyhedron defined by Q1(u) for
all u ∈ H . Let L(s) be the set of n triplets corresponding to the nonzero components of
s (the assignment from J to K). It is easy to see that if there exist u, v ∈ L(s) such that
u = (i0, j0, k0) and v = (i0, j1, k1), i.e., the assignment overcovers the set I , then both
Q1(i0, j0, k1) and Q1(i0, j1, k0) are violated by s. Figure 8 shows the decomposition
of an optimal fractional solution x̂ (a) into a convex combination of assignments (b-d).
The pair of triplets (0, 3, 1) and (0, 0, 3) satisfies the condition just discussed and iden-
tifies two violated valid inequalities, Q1(0, 3, 3) and Q1(0, 0, 1) that are violated by the
second assignment, shown in (c). The latter is also violated by x̂ and is illustrated in (e).
This separation routine runs in O(n) time.

Now consider separating a member s of F ′ from the polyhedron defined by P1(u, v)

for all u, v ∈ H . As above, for any pair of assignments that correspond to non-
zero components of s and have the form (i0, j0, k0), (i0, j1, k1), we know s violates

Fig. 8. Example of a decomposition into assignments
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P1((i0, j0, k0), (i, j1, k1)), ∀i �= i0 and P1((i0, j1, k1), (i, j0, k0)),∀i �= i0. In Figure 8,
the second assignment (c) violates P1((0, 0, 3), (1, 3, 1)). This inequality is also violated
by x̂ and is illustrated in (f). Once again, this separation routine runs in O(n) time.

4.3. Steiner Tree Problem

Let G = (V , E) be a complete undirected graph with vertex set V = {1, ..., |V |}, edge
set E, and a positive weight ce associated with each edge e ∈ E. Let T ⊆ V define
the set of terminals. The Steiner Tree Problem (STP), which is NP-hard, is that of
finding a subgraph that spans T (called a Steiner tree) and has minimum edge cost.
In [13], Beasley formulated the STP as a side constrained Minimum Spanning Tree
Problem (MSTP) as follows. Let r ∈ T be a given terminal and consider an artifi-
cial vertex 0. Construct the augmented graph Ḡ = (V̄ , Ē) where V̄ = V ∪ {0} and
Ē = E ∪ {{i, 0} | i ∈ (V \ T ) ∪ {r}}. Let ci0 = 0 for all i ∈ (V \ T ) ∪ {r}. The STP is
then equivalent to finding a minimum spanning tree (MST) in Ḡ subject to the additional
restriction that any vertex i ∈ (V \ T ) incident to an edge {i, 0} ∈ Ē must have degree
one.

By associating a binary variable xe with each edge e ∈ Ē, indicating whether or not
the edge is selected, we can formulate the STP as the following integer program:

min
∑
e∈E

cexe

x(Ē) = |V̄ | − 1 (27)

x(E(S)) ≤ |S| − 1 ∀S ⊆ V̄ (28)

xi0 + xe ≤ 1 ∀e ∈ δ(i), i ∈ (V \ T ) (29)

xe ∈ {0, 1} ∀e ∈ Ē (30)

Inequalities (27) and (28) ensure that the solution forms a spanning tree on Ḡ. Inequalities
(28) are subtour elimination constraints (similar to those used in the TSP). Inequalities
(29) are the side constraints that ensure the solution can be converted to a Steiner tree
by dropping the edges in Ē \ E.

The members of

F =
{
x ∈ R

Ē | x satisfies (27)− (30)
}

then correspond to feasible solutions of the STP and we call P = conv(F) the STP
polytope. We consider two classes of valid inequalities for the STP polytope that are
lifted versions of the subtour elimination constraints (SECs). For any x ∈ P , we have

x(E(S))+ x(E(S \ T : {0})) ≤ |S| − 1 ∀S ⊆ V, S ∩ T �= ∅, and (31)

x(E(S))+ x(E(S \ {v} : {0})) ≤ |S| − 1 ∀S ⊆ V, S ∩ T = ∅, v ∈ S (32)

The class of valid inequalities (31) were independently introduced by Goemans [27],
Lucena [40], and Margot, Prodon, and Liebling [44], for another extended formulation
of STP. The inequalities (32) were introduced in [27, 44]. The separation problem for
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Fig. 9. Example of a decomposition into minimum spanning trees

inequalities (31) and (32) can be solved in O(|V |4) time through a series of max-flow
computations.

In [41], Lucena considers the use of MSTP as a relaxation of STP in the context of
a branch, relax, and cut algorithm. Inequalities (29) describe the explicit polyhderon,
while the implicit polyhedron is defined to be P ′ = conv(F ′), where

F ′ =
{
x ∈ R

Ē | x satisfies (27), (28), (30)
}
.

The MSTP can be solved in O(|E| log |V |) time using Prim’s algorithm [54]. Consider
the separation of a member of s ∈ F ′ from the polyhedron defined by the lifted subtour
inequalities (31) and (32). In order to identify a violated inequality of the form (31) or
(32) we remove the artificial vertex 0 and find the connected components on the resulting
subgraph. Any component of size greater than 1 that does not contain r and does contain
a terminal defines a violated SEC (31). In addition, if the component does not contain
any terminals, then each vertex in the component that was not connected to the artificial
vertex defines a violated SEC (32).

Figure 9 shows an optimal fractional solution (a) to an LP relaxation of the STP
expressed as a convex combination of two spanning trees (b) and (c). In this figure, the
artificial vertex is black, the terminals are gray and r = 3. By removing the artificial
vertex, we easily find a violated SEC by considering the second spanning tree (c) with S

equal to the marked component. This inequality is also violated by the optimal fractional
solution, since x̂(E(S)) + x̂(E(S \ T : {0})) = 3.5 > 3 = |S| − 1. It should also
be noted that the first spanning tree (b), in this case, is in fact feasible for the original
problem.

5. Conclusions and Future Work

In this paper, we presented a framework for integrating dynamic cut generation (outer
methods) with traditional decomposition methods (inner methods). We have also dis-
cussed a paradigm for the generation of improving inequalities based on decomposition
and the separation of solutions to a relaxation, a problem that is often much easier than
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that of separating arbitrary real vectors. Viewing the cutting plane method, Lagrang-
ian relaxation, and Dantzig-Wolfe decomposition in a common algorithmic framework
can yield new insight into all three methods. The next step in this research is to com-
plete a computational study that will aid practitioners in making more informed choices
between the many possible variants we have discussed. As part of this study, we are
implementing a generic framework that will allow users to test these methods simply by
providing a relaxation, a solver for that relaxation, and separation routines for solutions
to the relaxation. Such a framework will enable access to a wide range of alternatives
for computing bounds using decomposition and cut generation.
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