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Abstract

This paper addresses the capacitated lot-sizing problem involving the production of multiple items on unrelated par-
allel machines. A production plan should be determined in order to meet the forecast demand for the items, without
exceeding the capacity of the machines and minimize the sum of production, setup and inventory costs. A heuristic
based on the Lagrangian relaxation of the capacity constraints and subgradient optimization is proposed. Initially,
the heuristic is tested on instances of the single machine problem and results are compared with heuristics from the lit-
erature. For parallel machines and small problems the heuristic performance is tested against optimal solutions, and for
larger problems it is compared with the lower bound provided by the Lagrangian relaxation.
© 2005 Elsevier B.V. All rights reserved.

Keywords: Heuristics; Lot-sizing; Parallel machines; Lagrangian relaxation

1. Introduction

The lot-sizing problem over periods of a finite horizon consists of determining how much to produce of
each item in order to satisfy the demand in each period without violating capacity constraints. The resulting
production plan should minimize the sum of setup, production and inventory costs. This problem is known
in the literature as the capacitated lot-sizing problem (CLSP), which can model single stage and multistage
production structures. There has been a vast amount of research in this area and surveys can be found in
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Bahl et al. (1987) and Kuik et al. (1994). Drexl and Kimms (1997) present and discuss several lot-sizing and
scheduling models other than CLSP. Recently, Karimi et al. (2003) presented a review of models and algo-
rithms for the single level capacitated lot-sizing problems.

Belvaux and Wolsey (2001) discuss models for lot-sizing problems and present valid inequalities to ob-
tain tight mixed-integer programs, which can be solved by commercial systems such as XPRESS and
CPLEX. Wolsey (2002) suggests a classification for lot-sizing problems and indicates for each problem class
families of valid inequalities, existence of tight reformulations and complexity of the optimization
algorithms.

This paper deals with the single stage CLSP in the setting of unrelated parallel machines. Each item can
be produced on any machine and a setup time is incurred before starting production. It is well known that
the presence of setup times poses hard difficulties (Trigeiro, 1987) in devising efficient optimal algorithms
and heuristics. It has been shown by Maes et al. (1991) that the problem of finding a feasible solution in
this case is NP-complete.

Focusing on previous works that deal with the single stage, single machine CLSP with setup times it can
be noted that few solution methods have been proposed. For the single stage problem, optimal algorithms
based on the branch-and-bound method have been developed by Diaby et al. (1992a) and Armentano et al.
(1999). The optimal cross decomposition method by Van Roy (1983) was used by Souza and Armentano
(1994) to solve the problem with bounds on the production variables. Heuristic methods have been pro-
posed to overcome the limitations of optimal methods. Trigeiro et al. (1989) suggest a heuristic based on
the Lagrangian relaxation of the capacity constraints and subgradient optimization. At each step of the
subgradient method a procedure, which shifts production between periods, is used to obtain a feasible solu-
tion. A similar approach was proposed by Lozano et al. (1991) and Hindi et al. (2003). Diaby et al. (1992b)
also suggest a heuristic based on the Lagrangian relaxation of the capacity constraints. At the end of the
subgradient optimization the setup decisions are retained and transportation problems are solved in order
to obtain feasible production quantities. Recently, Jans and Degraeve (2004) developed improved lower
bounds. Extensions of this problem have been considered in the literature. Ozdamar et al. (2002) include
overtime, Hung and Hu (1998, 2003) consider multiple capacitated resources and backorder. Gopalakrish-
nan et al. (2001) propose a tabu search algorithm for the CLSP with setup carryover, and also apply the
algorithm for solving the CLSP without carryover.

The research reported in the literature on lot sizing in parallel machines is quite limited. Sung (1986) sug-
gests a dynamic programming algorithm to solve a single item, parallel facility production planning model
without capacity constraints and no backlogging allowed. Lasdon and Terjung (1971) propose a heuristic
for the discrete lot-sizing and scheduling problem (DLSP) for identical parallel machines without setup
time. In the DLSP only one item can be produced per machine and per period and, if so, production uses
the full capacity. Carreno (1990) proposes a heuristic for the economic lot scheduling problem (ELSP) for
identical parallel machines with setup times. The ELSP is a continuous time and infinite horizon model with
constant demand rate for each item. To the best of our knowledge the CLSP for unrelated parallel ma-
chines, denoted CLSPP, has not been addressed in the literature.

This paper proposes a heuristic based on the Lagrangian relaxation of the capacity constraints and sub-
gradient optimization for solving the CLSPP. At every step of the subgradient method feasibility procedure
and an improvement procedure are applied to the solution of the Lagrangian problem. Both procedures are
based on shifts of production amounts between periods and machines in an attempt to construct a capacity
feasible solution and improve it. Initially, the heuristic is tested on instances generated by Trigeiro et al.
(1989) for the single machine problem and its performance is compared with that of Trigeiro et al.
(1989) and Gopalakrishnan et al. (2001). For parallel machines and small problems the heuristic solutions
are compared with optimal solutions and for larger problems involving up to 50 items, 18 periods and 6
machines the heuristic performance is tested against the lower bound provided by the Lagrangian
relaxation.
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2. Problem formulation

In order to state the problem mathematically, let

S setup cost of item i on machine j;

cj unit production cost of item i on machine j;

h; unit inventory cost of item i;

dy demand of item { in period f;

by time to produce one unit of item i on machine j;

Ji setup time of item i on machine j;

G capacity of machine j (in units of time);

Xijs amount of item i produced on machine j in period ¢ (a decision variable);

Vije a binary variable which assumes value 1 if item i is produced on machine j in period ¢ and 0, other-
wise (a decision variable);

I; inventory of item i at the end of period ¢ (a decision variable);

M an upper bound on x;,.

The CLSPP can be formulated as the following mixed integer programming model.

m n T

T n
Minimize Z Z Z(Sijyijt + C,-jx,-jt) + Z Z hilit
=1 j=1 i=1 =1 i=1

subject to Zx,j,-,+li,[_1—1,«,:d,«, i=1,....n; t=1,...,T,
J=1

n

S by + fiyg) <€ j=looms t=1,..T,

i=1

xip KMy, i=1,...,m j=1,...om; t=1,...,T,

Vin €{0,1 x5 2 0,1, 20 i=1,....m; j=1,....,m;

t=1,...

T

(1)

(2)

3)
(4)

The objective function expresses the sum of setup, production and inventory costs. Constraints (1) rep-
resent the inventory balance equations. Constraints (2) indicate that the amount of capacity used for pro-
duction is limited. Constraints (3) ensure the incidence of a setup cost and a setup time when X, is positive.

Backlogging is not allowed as indicated by the nonnegative restriction on [; in (4).

3. Lagrangian relaxation

Consider the Lagrangian relaxation with respect to the capacity constraints (2) and let u;, > 0,
j=1,...m;t=1,..., T denote the associated Lagrangian multipliers. The resulting Lagrangian problem

is given by

T T n
g(u;,) = Minimize Z Z Z(s,:,—yl:,-t + cyxi) + Z Zh,-l,-t
=1 i=1

el ST T S

T m n
+ Z Zﬂjt Z(bijxijt +ﬁjyijt) -G
=1 j=1 1

i=

subject to (1), (3), and (4).
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It is easy to see that g(u;;) decomposes into the sum of the constant —ZLIZ7:1 ;,C; and n independent
subproblems, one for each item, with the form

gi(:ujt) Mlmmlze Z Z Sij + lujtfl])yz/t (cyj + Wiebij )xii] Zh Iy

Xijt it
ijts J’z/t i =1

Subject to injt+[i4t717]it:dira t:l,...,T;
j=1
X K Myy, j=1,....m; t=1,....T;
yijte{oyl}a xjp 20,0, 20 j=1,....m; t=1,...T.

Note that g{u;,) is a minimization problem with a concave objective function and linear constraints. It
follows that the minimum occurs in an extreme point, which in the case of a polyhedral set has at most the
number of constraints (7) nonzero variables. If d,> 0, t = 1,..., T, then either /,_; > 0 or x;;, > 0 for some
je{l,...,m}. Thus, every extreme point must satisfy the following property:

Iiowxy; =0, j=1,....m; t=1,...,T.

The characterization of an extreme point above is a generalization of the single machine case which was
stated by Wagner and Whitin (1958). It is also valid in the case where d;, = 0 for some ¢ and the reasoning
follows the same line presented by Johnson and Montegomery (1974). Based on this characterization, we
extended the single machine dynamic programming algorithm proposed by Evans (1985) and used it to
solve the Lagrangian problem.

The subgradient method was used to maximize the dual function g(u;,) over p;, >0, j=
1,...,m,t =1,...,T. The algorithm proposed by Held et al. (1974) and the modified algorithms suggested
by Camerini et al. (1975) and Crowder (1976) were implemented and a better dual function value was
achieved by the first algorithm for a given number of iterations. The step size in the direction of the sub-
gradient is proportional to a parameter 4 and the most effective rule for generating a decreasing sequence
for A is characterized by the parameters (4, ro, d, 7,,,), which can be described as follows (Held et al., 1974;
Crowder, 1976). The sequence is started by letting A = 4y for r = ry iterations. Both 1 and r are then di-
vided by d; the sequence now has this new value of A for r iterations, at the end of which both 1 and r are
again divided by d. This process is repeated until r < r,,, thereafter, A is divided by d every r,, iterations.
The upper bound used in the subgradient algorithm is initially set to a large number and then it is
updated according to the value of the incumbent solution. Computational tests have shown that
suitable values for the parameters are (1.75, 25, 2, 10) and that the number of iterations should be set
to 150.

4. Heuristic description

The heuristic suggested for solving CLSPP contains three phases. Given a capacity infeasible solution
obtained by minimizing the Lagrangian problem the feasibility phase shifts production between periods
and machines in an attempt to find a feasible solution for the problem with additional capacity, i.e.,
(1 + 2)C;, where « is chosen in the interval [a,b] with uniform probability. The idea is to distribute the
capacity excess among the periods. If the resulting solution is infeasible, then the feasibility phase is again
applied, now with the original capacity C;. Finally, the improvement phase starts from a feasible solution
and searches for lower cost feasible solutlons The feasibility phase is applied to the solution of the
Lagrangian problem at every step of the subgradient method. The proposed heuristic is summarized by
the following algorithm:



1074 F.M.B. Toledo, V.A. Armentano | European Journal of Operational Research 175 (2006) 1070-1083

Step 1. If the solution obtained by minimizing the Lagrangian problem is feasible go to Step 6.

Step 2. Increase the capacity of machine by the factor (1 + «), with o selected in the interval [a, b] with
uniform distribution;

Step 3. Apply the feasibility phase;

Step 4. If the solution is infeasible return to the original capacity and apply the feasibility phase.

Step 5. If a feasible solution is found, apply the improvement phase and go to Step 6; else, execute an
iteration of subgradient optimization and go to Step I;

Step 6. Update the incumbent solution.

4.1. Feasibility phase

Assume that a solution violates constraints (2), i.e. the capacity of at least one machine j is exceeded in at
least one period ¢. A feasible solution is searched by moving production on machine j from period ¢ to an-
other period and another machine or to the same period ¢ and another machine.

Let

n
A(j,1) = Z(bijxijt +fijyijt) -G
=1
and define ¢ = max{a,0}.
The capacity exceeded on machine j in period ¢ is represented by

Excess(j, ) = A(j,1)".

In order to eliminate Excess(J, f) one considers moving a quantity ¢ of an item i produced in (j, 7) to (jI, t])
with jl # j and/or ¢l # t. The quantity ¢ is chosen as

q = min{Zijta Qij[}7
where Z;;, = maximum amount of item i produced on machine j that can be transferred from period ¢ to
period ¢I. This amount depends whether ¢/ < ¢ or ¢/ > ¢, and

Excess(J/, )
Oj ="
7]

Note that if O;;; < Z;;,, then Q;;, represents the exact amount of item i that reduces Excess (j, t) to zero.

The selection of the quadruple (g, i,j/, t/) which denotes the quantity ¢ of the item i to be moved to a
machine j/ in period #/ is such that it minimizes the following criterion, which represents a tradeoff between
cost variation and capacity violation:

Cost_variation + f§ - Penalty
Excess_reduction ’

(5)

The cost variation caused by the transference of the quantity ¢ of the item i moved from (j, ¢) to (j/, ¢/) is
given by

q-hi(t—tl) + (1 =y, 10)sij0 — 618y

Cost_variation = -
(solution_value)/(7mn)

)

where solution value denotes the cost of the current solution, before performing the transference, and

{ L, if g =y,
o) = . '
07 if q < Xijt-
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The penalty in (5) is a nonnegative term that can be interpreted as a cost for overuse of capacity in (j, 7)
and (j/, /), and is expressed as
Excess_after(j, ¢) n Excess_after(j/, t/) — Excess_before(;!, tl)}
¢ Cii ’

Penalty = {

where
Excess_after(j, t) = [A(j, ) — (q by + f;;01)]
Excess_after(jl, tl) = [A(jl,tl) + (gb; ;; + (1 = y, ) fist)]
Excess_before(jl, tl) = A(jl, tl)".

The factor f in (5) denotes the penalty weight, which is increased when a feasible solution cannot be
found with its current value. Finally, the denominator Excess Reduction in (5) is the difference between
Excess_after (j, ) and Excess_before (j,7), i.e.

qbij Jrfijél

Excess_reduction =
G

The feasibility phase consists of a number of p sequences of backward and forward steps. In the first
sequence the penalty weight is set to 5. If a feasible solution is not found then the weight is increased to
2/ in the second sequence to give more importance to the capacity constraint violation. In the pth sequence,
the weight becomes pf5, and in case a feasible solution is not found, then either the problem has no feasible
solution or the feasibility phase fails to produce a feasible solution.

4.2. Backward shifts

Production shifts from periods t = 7,7 — 1,...,2 to earlier periods ¢/ are examined in that order. For
each pair machine-period (7, #) which exceeds the capacity C; one moves quantities ¢ of items produced
in (j, ¢) to other pairs (j/, t/) until the capacity constraint in (j, 7) is satisfied. For a given item i the periods
tl are such that © < t/ < ¢, where © = max{ 1, the last period before ¢ in which there is production of item i},
and if ¢/ = ¢ then jI # j.

From constraints (1) it follows that the move of the quantity ¢ of x;;, to a period ¢/ < ¢ causes the inven-
tory levels I,k =1tl,...,t — 1 to be increased by ¢g. Thus,

Zijp = Xijq-

If after all moves, the capacity constraints in period one are met then a feasible solution is obtained.
Otherwise, forward shifts are applied as described next.

During computational tests a kind of cycling was detected by the indefinite transfer of the same item
between two machines in the same period. In order to avoid this, a cycle counter was included to prevent
this situation. This counter is represented by a matrix Cycle (i,j) and its elements take on the value zero,
when shifts are started in period ¢. At each shift of an item i to a machine j the element Cycle (7,) is incre-
mented by one and to avoid cycles we allow a shift of an item i to a machine j only if Cycle (i,)) < 2.

The backward procedure is described by the following algorithm:

Step 1. Let t =T;

Step 2. Initialize the cycle counter;

Step 3. If no machine has capacity violation, go to Step 7;

Step 4. Compute the best shift of item i produced in period ¢ and machine j;
Step 5. Execute the shift;
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Step 6. If the capacity of this machine is violated, go to Stzep 4, otherwise go to Step 3;
Step 7. Lett =1 —1;
Step 8. If t = 2 go to Step 2, otherwise stop.

At iteration ¢, nm operations are performed in Step 2 to initialize the matrix of the cycle counter with
elements equal to zero. In the worst case, we have n items produced on a single machine that can be moved
to all m machines and all T periods, i.e., O(nmT) operations are performed in Step 4. The best shift of an
item i produced in period ¢ and on machine j is computed by (5). At most 7 operations are performed in
Step 5 to update the inventory amount in each period. Steps 4-6 correspond to an internal loop that moves
at most n items while there are capacity violated machines, and hence its complexity is O(n). Steps 3—7 con-
stitute a loop that is repeated at most O(nm) times due to the cycle counter, i.e., an item can leave the same
machine twice, thus in the worst case » items can leave twice m machines. Thus, the resulting complexity for
the backward procedure is O(n’m*T°).

4.3. Forward shifts

Production shifts from periods z = 1,2,..., T — 1 to later periods ¢/ are examined in that order. For each
pair machine-period (7, #) which exceeds the capacity C; one moves quantities ¢ of items produced in (j, f) to
other pairs (j/, t/). For a given item i the periods #/ are such that ¢ < ¢/ < 7, where 1 = min{ 7, the first period
after ¢ in which there is production of item i}, and if #/ = ¢ then jI # .

From constraints (1) it follows that the move of the quantity ¢ of x;;, to a period ¢/ > ¢ causes the inventory
levels I,k =t,t + 1,...,tl to be reduced by ¢. Since I;, is nonnegative and nonincreasing, it follows that

Zije = min{ x;, L1}

If after all moves the machine capacity constraints are met then a feasible solution is obtained. Other-
wise, backward shifts are applied again. Cycling as described above can also occur here, and the complexity
of the forward procedure is identical to the backward procedure.

The feasibility phase is described by the following algorithm:

Step 1. Let count = 1;

Step 2. If the solution obtained is feasible or count > p, stop;
Step 3. Apply the backward shifts;

Step 4. If the solution obtained is feasible, stop;

Step 5. Apply the forward shifts;

Step 6. Count = count + 1;

Step 7. Go to Step 2.

4.4. Improvement phase

This phase starts from a feasible solution and searches for lower cost solutions by performing backward
and forward production shifts while maintaining capacity feasibility. In the backward stage initially, a pair
machine-period (j/, t/) with capacity slack is identified and this is done by examining #/ = T7,...,1 and
jl=1,...,m, in that order. One then considers moving production from the pairs (j,7) with r =T,... ¢l
and j = 1,...,m to the pair (jl, t/) with capacity slack. Let

Slack (1, t1) = [~A(jl, t1)]*

denote the capacity slack of machine j/ in period /.
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The quantity of a given item i produced in (j, #) to be transferred to (jI, ¢/) with ¢ > ¢/ is given by

o Slack(jl, t1) — (1 = y; y.u)fisn
g = min b y Xijt (-
iyj

(6)

The first term in (6) represents the maximum amount of item 7 that can be transferred to (j/, ¢/) without
violating the capacity C;, and the second term results from the production x;. The selected quadruple
(¢g,1,j, 1) is the first one that yields cost reduction. If Slack(jl, ¢]) is still positive after the transference, the
process is repeated in an attempt to further reduce the cost. The forward procedure is similar to the back-
ward procedure, except by the quantity to be transferred

Slack(jl,¢tl) — (1 =y, ;) fin . .
q= min{ G, t) 5 (L= i i ,mln{xfj,,mln{l,«k}}}.
ijl t<k<tl

()

5. Computational results

The heuristic was programmed in C and tests were run on 2.08 GHz AMD Athlon XP2600 + micro-
computer, IGB RAM and Linux operational system. Computational tests involve three experiments. In
the first one, the heuristic is tested for the single machine CLSP and its performance is compared with
the heuristics proposed by Trigeiro et al. (1989) and Gopalakrishnan et al. (2001) on instances provided
by the first authors. In the second experiment, the heuristic is tested on randomly generated small instances
of the CLSPP, which were solved to optimality by using the solver CPLEX 7.5.0. In the third experiment,
the heuristic is tested on randomly generated larger instances of the CLSPP involving up to 50 items, 6 ma-
chines and 18 periods and the solutions quality are evaluated by the lower bound generated by the Lagrang-
ian relaxation. In all experiments, for each instance the heuristic is applied ten times in order to check its
robustness relative to the random capacity factor «. Suitable values for the parameters required by the heu-
ristic were found by computational tests and are as follows: o € [0.05,0.20], § = 0.15 and p = 15.

5.1. Results for experiment 1

Table 1 shows the results for the instances of single machine CLSP, which are divided in three groups.
Group EW contains 58 instances with 6 items and 15 periods, 6 instances with 4 items and 15 periods and 6
instances with 8 items and 15 periods. The group FG has 70 instances with 6 items and 15 periods and 71
instances with 6,12 and 24 items, and 15 and 30 periods. There are five problems for each combination of
number of items and periods, except for the combination of 6 items and 15 periods for which there are 46
problems. Finally, Group X contains 540 instances with 20 periods and 10 items. Gopalakrishnan et al.
(2001) applied the proposed tabu search algorithm, denoted (HG), to the groups FG and X of instances.
Computational times for the proposed heuristic (H) and the heuristic developed by Trigeiro et al. (1989)
(HT) are very small, not exceeding 2 seconds. The gaps in Table 1 are computed with respect to lower

Table 1
Computational results for the single machine CLSP
Group Gap HT Gap HG Gap H (%) Best (%) Ties (%)
Mean Worst case Best case Mean Worst case Best case Mean Worst case Best case
EW 4.1 - 4.1 4.3 4.1 57 53 60 7 6 7
FG 4.2 32 44 4.6 4.3 47 44 50 7 6 9

X 23 4.0 2.5 2.6 2.5 35 32 36 16 15 16
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bounds also provided by Trigeiro et al. (1989), whereas best and ties refer to the number of instances for
which H outperformed HT, and the number of instances for which the heuristics reach the same least cost
solution. First, note that the proposed heuristic is robust, since the mean, worst and best gaps among ten
trials are very similar. The gaps for H and HT show that the heuristics are very competitive. For groups EW
and FG, H is slightly superior to HT in terms of number of best solutions. On the other hand, HT performs
better for group X. Finally, the gaps in Table 1 show that HG performs better than H and HT for group
FG, but it is outperformed by H and HT for group X.

In the following, we present results for six instances of group FG, with 6, 12 and 24 items and 15 and 30
periods, one for each combination, which are considered difficult instances by Belvaux and Wolsey (2000).
The optimal solutions for such instances were obtained by the solver CPLEX 7.5.0, spending on average 41
minutes in a station Sun Ultra 60. Table 2 shows the gaps for the solutions values found by HT and H rel-
ative to the optimal solution values. Computational times spent by the heuristic are below one second. Ta-
ble 2 shows that heuristic H performs better than HT, in terms of mean gap for three instances.

5.2. Results for experiment 2

The heuristic was tested on a set of 80 small instances with number of items » = 8, number of machines
m =2, and number of periods T =4, for which optimal solutions were obtained by using the solver
CPLEX 7.5.0. The heuristic performance was evaluated in terms of the quality of the solution, the ability
to find feasible solutions, and it is analyzed according to three factors: setup cost, setup time and capacity.
Setup cost and setup time can be high or low and capacity can be normal or tight. For each combination of
these three factors 10 instances were generated with cost parameters and machine capacities constant over
time. The parameters were generated in an interval [a, b] with uniform distribution and denoted Ula, b]:

e unit production cost (c;): U[1.5,2.5],

e setup cost (s;): U[5.0,95.0]; low setup costs are generated in this interval and high setup costs are
obtained by multiplying low setup costs by 10,

unit inventory cost (4,): U[0.2,0.4],

unit processing time (b;): U[1.0,5.0],

setup time (f;): U[10.0,50.0]; low setup times are generated in this interval and high setup times are
obtained by multiplying low setup time by 1.5,

demand (d;,): U[0, 180].

Capacity was generated as follows. The demand of each item in each period is split among the machines.
The lot-for-lot policy is then applied to each machine and the average is taken over the number of machines
and periods. This results in the following expression for the capacity in each period,

Table 2
Computational results for six instances of group G
GAP HT GAP H
Mean Worst case Best case

G30 35 5.3 5.8 4.6

G53 0.9 3.1 3.8 24

G57 0.4 0.2 0.2 0.1

G62 2.3 2.1 2.3 1.6

G69 1.3 0.8 0.8 0.5

G72 0.1 0.1 0.1 0.1
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Z;Z;LZL] (% bij +fij)
Cap = .
mT

In the above expression, the setup of every item takes place in every machine and period, which generates
too much capacity for each period, specially for four and six machines. Preliminary computational tests
using Cap disclosed that the generated solutions utilized a low capacity level, on average 70% and 65%
for low and high setup costs. In order to generate instances with mean capacity utilization around 80%
for low setup cost and 2, 4 and 6 machines, we used the least squares method to fit a linear expression
of the capacity as a function of the number of machines:

Cap’ = (1.18 — 0.07m)Cap.

Tight capacity is obtained by multiplying Cap’ by 0.9.
In order to evaluate the quality of the heuristic solutions the following relative deviations are considered:

GAPl =™ "7 100, GAP2=2""7L.100, GAP3="""2°.1¢p,
ZL ZL 20
where
ZH heuristic solution value,
Zo optimal solution value,
29 lower bound provided by the Lagrangian relaxation.

Table 3 shows the heuristic behavior for the set of small instances. Note that GAP2 is larger for high
setup costs, which seems to indicate the existence of a duality gap. This is probably due to the fact that
for high setup costs the solution of the Lagrangian problem tends to have few machine setups, thereby
resulting in a poor lower bound. GAP3 shows that the heuristic is better than the quality measure given
by GAPI1. Observe that the heuristic presents a better performance for low setup costs. For instances with
tight capacity and high setup times, capacity constraints become tighter and as a result the number of fea-
sible solutions obtained by the heuristic is smaller when compared to instances with tight capacity and low
setup time. However, the gap of the feasible solutions is not altered. Running times for the heuristic are
below one second for all instances, while CPLEX times varied between 1 and 8 seconds. The heuristic found
the same number of feasible solutions as CPLEX, and FEA denotes the percentage of instances for which a
feasible solution was found. We can also observe that the proposed heuristic is robust, since the mean,
worst and best gaps are similar.

Table 3
Relative deviations for small instances with two parallel machines
Capacity/setup® FEA GAP1® GAP2° GAP3®

M w B M w B M w B
NLL 100 1.5 1.6 1.3 1.2 1.3 1.0 0.3 0.3 0.3
TLL 93 3.2 3.7 2.8 2.7 3.1 2.4 0.4 0.6 0.3
NHL 100 15.8 20.7 14.6 12.5 16.8 11.6 29 3.1 2.6
THL 99 32.6 39.0 30.2 29.0 353 27.4 2.6 3.1 2.1
NLH 100 2.1 2.5 1.9 1.8 2.2 1.6 0.3 0.3 0.2
TLH 73 5.4 6.1 4.8 4.2 4.7 3.6 1.2 1.4 0.9
NHH 100 20.6 24.8 17.3 17.2 21.3 14.1 2.8 33 2.6
THH 70 41.7 435 34.4 34.9 36.5 27.7 44 4.8 3.9

# Capacity/setup cost/setup time (N) normal, (T) tight, (L) low, (H) high.
® (M) Mean, (W) worst case, (B) best case.
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5.3. Results for experiment 3

In this experiment, the heuristic was tested on a set of 2880 instances of sizes n = 6,12,25,50;
m=2,4,6;, T=6, 12, 18, which were generated as above. Table 4 shows the heuristic performance for
all sizes, according to the three factors: setup cost, setup time and capacity. The cells of the table associated
to columns GAP1 and Time represent the average, in seconds, over 360 instances, replicated 10 times. The
high percentage of feasible solutions found shows that the heuristic is very effective. Note that larger gaps
are associated with high setup costs and times and this may be due to the duality gap, as observed in Table
3. As in Table 3 a smaller number of feasible solutions is found by the heuristic in the case of tight capacity
and high setup time. GAP3 shows that setup times do not affect the solution quality, but high setup costs
cause a small deterioration in the solution. The maximum time required to solve an instance is less than 11
minutes, which is reasonable since the largest instance has 5.400 binary variables. For all instances, the heu-
ristic presented small gap variations for the 10 replications.

The average capacity utilization of the heuristic solution in the case of normal capacity is 79% and 72%
for low and high setup costs, respectively. For tight capacity the solutions utilized on average 85% and 77%
of the capacity for low and high setup costs, respectively. The setup time consumes at most 12% of the nor-
mal or tight capacity. The improvement procedure yields gains ranging from 1% to 23%, being more sig-
nificant for high setup costs, irrespective of the setup times.

Table 4

Heuristic performance for larger instances

Capacity/setup® FEA GAPI Mean time Max. time
NLL 99 2.0 39 70.9
TLL 98 3.4 8.9 183.5
NHL 99 11.7 5.3 49.7
THL 98 18.5 7.8 108.1
NLH 98 2.5 4.9 48.8
TLH 95 4.2 14.4 631.7
NHH 98 13.8 5.9 62.3
THH 96 23.5 8.4 95.5

4 Capacity/setup cost/setup time: (N) Normal; (T) Tight; (L) Low; (H) High.

Table 5

Normal capacity, low setup time and low setup cost

m n GAPI1 Mean time Improvement Utilized capacity FEA (%)

M w B Gain Mean time Mean Mean setup

2 6 22 2.5 1.8 0.3 1.1 0.1 79.9 5.8 99
12 1.0 1.1 0.8 0.6 0.5 0.4 80.6 5.3 100
25 0.3 0.4 0.2 1.5 0.2 0.8 83.7 5.2 100
50 0.1 0.1 0.1 2.6 0.0 1.1 82.5 5.2 100

4 6 5.8 6.0 5.7 0.9 33 0.4 72.3 6.4 100
12 1.8 2.1 1.5 1.7 1.6 0.9 75.6 5.4 100
25 0.3 0.4 0.3 3.0 0.2 1.7 77.3 5.3 100
50 0.1 0.1 0.1 6.2 0.0 3.0 80.7 5.4 100

6 6 104 11.2 9.6 1.6 4.8 0.6 64.2 6.9 90
12 2.4 2.8 2.0 3.1 1.9 1.8 71.9 6.2 100
25 0.9 1.0 0.7 6.9 0.8 3.9 79.8 5.8 100

50 0.3 0.3 0.2 14.9 0.1 6.7 83.5 5.8 100
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Table 6

Normal capacity, low setup time and high setup cost

m n GAPI1 Mean time Improvement Utilized capacity FEA (%)

M w B Gain Mean time Mean Mean setup

2 6 18.2 20.6 159 0.5 16.9 0.3 73.7 3.7 95
12 7.1 8.3 5.9 0.9 6.3 0.6 71.7 3.0 100
25 34 4.5 2.1 2.3 2.0 1.2 75.6 2.9 100
50 1.0 1.1 1.0 6.1 0.5 1.9 76.6 29 100

4 6 31.2 33.0 29.5 0.9 18.1 0.5 62.4 4.5 100
12 8.9 10.4 7.9 2.1 8.3 1.3 67.5 3.5 100
25 3.1 3.6 2.6 4.3 1.7 2.6 73.3 3.2 100
50 1.1 1.1 1.0 10.3 0.5 4.6 74.2 2.9 100

6 6 52.8 54.9 51.3 1.7 21.0 0.7 57.3 5.4 90
12 16.6 17.6 15.0 3.7 10.9 2.4 63.8 4.1 100
25 4.9 5.5 4.5 8.0 3.0 4.9 71.9 3.5 100
50 1.7 2.0 1.6 17.4 0.8 9.0 75.6 3.2 100

Regarding the parameters that define the size of the generated instances, the heuristic behaves as follows.
The increase of the number of periods does not affect the solution gap, and computational times increases
accordingly. Tables 5 and 6 illustrate the effect of the number of items and number of machines on the heu-
ristic performance, for instances with 12 periods, low setup time and low/high setup costs. For the remain-
ing cases of different number of periods, high setup time and low/high setup costs the behavior of the
heuristic is similar to that presented in Tables 5 and 6. These tables show the mean, worst and best gaps
over 10 replications, the mean computational time, the mean gain and mean computational time due to
the improvement phase, the mean capacity utilization and the mean capacity used for the setup time.

Tables 5 and 6 show that the solution gap decreases with the number of items, sometimes in a significant
way as in the case of high setup cost and six machines, where the mean gap is 52.8% for 6 items and 1.7%
for 50 items. The mean gap gain that results from the improvement phase is more significant for 6 and 12
items and the required computational time is low. In addition, the heuristic is able to find a feasible solution
for almost all instances.

Comparing the results of Table 5 with those of Table 6, we note that the mean gap is higher for high
setup cost, which is probably due to a duality gap. The mean gain is also higher in this case, due to the
merge of setups. Finally, high setup cost implies fewer setups and consequently, a smaller setup time.

6. Conclusion

This paper dealt with the capacitated lot-sizing problem involving the production of multiple items on unre-
lated parallel machines. A simple heuristic based on the Lagrangian relaxation of the capacity constraints and
subgradient optimization was proposed. Despite its simplicity it showed to be competitive with heuristics from
the literature for the single machine capacitated lot-sizing problem. Results for parallel machines showed that
the heuristic is fast and is able to find a high number of feasible solutions with high quality.
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